241 research outputs found

    Local Buyer Market Power and Horizontally Differentiated Manufacturers

    Get PDF
    In this paper we study a farmer-processor relationship, where market power is bidirectional: processors have buyer as well as seller market power. Farmers supply a homogeneous raw input to the processors, which, in turn, process it into a horizontally differentiated product. The analysis shows that the spread between prices that both parties receive can be decomposed into two components: one due to buyer market power in the agricultural input market and one due to seller market power in the differentiated processed market. Farmers receive a decreasing dollar share of the final price as concentration in the processed good market increases. On the other hand, the price spread due to processors' buyer (seller) market power decreases (increases) when farmers' transportation costs shrink and when consumers' strength for brand preference increases. We also examine welfare: while the surplus of farmers serving a specific processor is adversely affected in a more concentrated processed good market, the total surplus of farmers serving all processors is independent of the industry concentration. In addition, consumers are worse off when the processed good market is more concentrated and farmers' transportation costs are larger. While stronger brand preference implies a larger "travel cost" for consumers, it may encourage more processors to join the market and provide more varieties.buyer market power, horizontal differentiation, Agribusiness, Industrial Organization, Marketing, D43, L13, M31, Q13,

    Buyer Market Power and Vertically Differentiated Retailers

    Get PDF
    We consider a model of vertical competition where downstream firms (retailers) purchase an upstream input from a monopolist and are able to differentiate from each other in terms of quality. Our primary focus is to study the effects of introducing a large retailer, such as a Wal-Mart Supercenter, that is able to lower wholesale prices (i.e. buyer market power). We obtain two main results. First, the store with no buyer market power responds to the presence of the large retailer by increasing its quality, a finding that is consistent with recent efforts by traditional retailers to enhance shoppers’ buying experience (i.e. quality). Second, the presence of a large retailer causes consumer welfare to increase. There are, however, two reasons for the increase in consumer welfare: consumers gain from the large retailer’s low price (because the upstream discount is partially passed on to the retail price) as well as from the high quality level offered by the traditional retailer. Contrary to the conventional wisdom most of the consumer welfare gains seem due to the latter. The intuition for this result is that price competition softens substantially as a result of firms’ quality differentiation. We also investigate the effects of buyer market power on retail and wholesale prices as well as on producer welfare.buyer market power, vertical differentiation, Wal-Mart

    The texture of thin NiSi films and its effect on agglomeration

    Get PDF
    Nickel silicide films are used as contacting materials in the micro electronics industry. It was recently [1] discovered that these films exhibit a peculiar type of texture, which was called 'axiotaxy', whereby certain lattice planes in the NiSi grains are preferentially aligned to (110)-type lattice planes in the single crystal Si substrate. In this contribution, we present a quantitative study of this phenomenon, using both XRD pole figure measurements and EBSD. Furthermore, we report a correlation between the texture of these NiSi films and their morphological stability during annealing at high temperature. In spite of the small grain size in these films, EBSD could be used to determine the volume fractions of the various texture components. This provided quantitative support for the claim that axiotaxy is the main texture component in these films, as about 40% of the grains belong to one of the axiotaxial texture components, and the remaining fraction exhibits a random orientation. A discussion of the techniques used during the measurement and analysis of the EBSD data is presented, as this must be given special consideration in view of the peculiar type of texture encountered in these films. Secondly, both XRD and EBSD were performed after annealing the NiSi films at various temperatures and durations. It is known that thin NiSi films have a strong tendency to agglomerate [2]. Our data indicates a correlation between the texture evolution and the agglomeration of the NiSi layer. Grains with axiotaxial orientation were observed to grow and thicken during the annealing process, by consuming neighboring randomly oriented grains. This suggests that the texture of the NiSi layer is a determining factor for the morphological stability of the film. The fact that grains with axiotaxial orientation grow during heat treatment can be related to the one dimensional periodicity at the interface, which lowers the interface energy and thus provides a driving force for the preferred growth of these grains. The agglomeration of NiSi films results in a significant increase of the sheet resistance. Therefore, these results illustrate the importance of texture control for the application of these films as contacts in micro-electronic devices

    Influence of alloying elements on the phase formation of ultrathin Ni (<10nm) on Si(001) substrates

    Get PDF
    The influence of Ni thickness on the formation of Nickel silicides was systematically investigated between 0 and 15nm. Annealing thickness gradients distinguishes films that agglomerate (>5nm) and films that are morphologically stable (<5nm). Alloying the initial Ni layer influences this critical thickness to higher (Al, Co) and lower (Ge, Pd, Pt) values. Pole figures and in situ XRD provides information to understand this observed shift in critical thickness

    Learning to Become an Expert: Deep Networks Applied To Super-Resolution Microscopy

    Full text link
    With super-resolution optical microscopy, it is now possible to observe molecular interactions in living cells. The obtained images have a very high spatial precision but their overall quality can vary a lot depending on the structure of interest and the imaging parameters. Moreover, evaluating this quality is often difficult for non-expert users. In this work, we tackle the problem of learning the quality function of super- resolution images from scores provided by experts. More specifically, we are proposing a system based on a deep neural network that can provide a quantitative quality measure of a STED image of neuronal structures given as input. We conduct a user study in order to evaluate the quality of the predictions of the neural network against those of a human expert. Results show the potential while highlighting some of the limits of the proposed approach.Comment: Accepted to the Thirtieth Innovative Applications of Artificial Intelligence Conference (IAAI), 201

    Archipelago-Wide Island Restoration in the Galápagos Islands: Reducing Costs of Invasive Mammal Eradication Programs and Reinvasion Risk

    Get PDF
    Invasive alien mammals are the major driver of biodiversity loss and ecosystem degradation on islands. Over the past three decades, invasive mammal eradication from islands has become one of society's most powerful tools for preventing extinction of insular endemics and restoring insular ecosystems. As practitioners tackle larger islands for restoration, three factors will heavily influence success and outcomes: the degree of local support, the ability to mitigate for non-target impacts, and the ability to eradicate non-native species more cost-effectively. Investments in removing invasive species, however, must be weighed against the risk of reintroduction. One way to reduce reintroduction risks is to eradicate the target invasive species from an entire archipelago, and thus eliminate readily available sources. We illustrate the costs and benefits of this approach with the efforts to remove invasive goats from the Galápagos Islands. Project Isabela, the world's largest island restoration effort to date, removed >140,000 goats from >500,000 ha for a cost of US$10.5 million. Leveraging the capacity built during Project Isabela, and given that goat reintroductions have been common over the past decade, we implemented an archipelago-wide goat eradication strategy. Feral goats remain on three islands in the archipelago, and removal efforts are underway. Efforts on the Galápagos Islands demonstrate that for some species, island size is no longer the limiting factor with respect to eradication. Rather, bureaucratic processes, financing, political will, and stakeholder approval appear to be the new challenges. Eradication efforts have delivered a suite of biodiversity benefits that are in the process of revealing themselves. The costs of rectifying intentional reintroductions are high in terms of financial and human resources. Reducing the archipelago-wide goat density to low levels is a technical approach to reducing reintroduction risk in the short-term, and is being complemented with a longer-term social approach focused on education and governance

    Filtering Pixel Latent Variables for Unmixing Noisy and Undersampled Volumetric Images

    Full text link
    The development of robust signal unmixing algorithms is essential for leveraging multimodal datasets acquired through a wide array of scientific imaging technologies, including hyperspectral or time-resolved acquisitions. In experimental physics, enhancing the spatio-temporal resolution or expanding the number of detection channels often leads to diminished sampling rate and signal-to-noise ratio, significantly affecting the efficacy of signal unmixing algorithms. We propose applying band-pass filters to the latent space of a multi-dimensional convolutional neural network to disentangle overlapping signal components, enabling the isolation and quantification of their individual contributions. Using multi-dimensional convolution kernels to process all dimensions simultaneously enhances the network's ability to extract information from adjacent pixels, time- or spectral-bins. This approach enables more effective separation of components in cases where individual pixels do not provide clear, well-resolved information. We showcase the method's practical use in experimental physics through two test cases that highlight the versatility of our approach: fluorescence lifetime microscopy and mode decomposition in optical fibers. The latent unmixing method extracts valuable information from complex signals that cannot be resolved by standard methods. Application of latent unmixing to real FLIM experiments will increase the number of distinguishable fluorescent markers. It will also open new possibilities in optics and photonics for multichannel separations at increased sampling rate.Comment: 16 pages, 8 figures (main paper) + 18 pages, 9 figures (supplementary material

    The phase diagram of NiSi under the conditions of small planetary interiors

    Get PDF
    The phase diagram of NiSi has been determined using in situ synchrotron X-ray powder diffraction multi-anvil experiments to 19 GPa, with further preliminary results in the laser-heated diamond cell reported to 60 GPa. The low-pressure MnP-structured phase transforms to two different high-pressure phases depending on the temperature: the ε-FeSi structure is stable at temperatures above ∼1100 K and a previously reported distorted-CuTi structure (with Pmmn symmetry) is stable at lower temperature. The invariant point is located at 12.8 ± 0.2 GPa and 1100 ± 20 K. At higher pressures, ε -FeSi-structured NiSi transforms to the CsCl structure with CsCl-NiSi as the liquidus phase above 30 GPa. The Clapeyron slope of this transition is -67 MPa/K. The phase boundary between the ε -FeSi and Pmmn structured phases is nearly pressure independent implying there will be a second sub-solidus invariant point between CsCl, ε -FeSi and Pmmn structures at higher pressure than attained in this study. In addition to these stable phases, the MnP structure was observed to spontaneously transform at room temperature to a new orthorhombic structure (also with Pnma symmetry) which had been detailed in previous ab initio simulations. This new phase of NiSi is shown here to be metastable
    corecore