4 research outputs found

    Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.

    Get PDF
    The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers\u27 tissue of origin

    Persistent mutant oncogene specific T cells in two patients benefitting from anti-PD-1

    No full text
    Abstract Background Several predictive biomarkers are currently approved or are under investigation for the selection of patients for checkpoint blockade. Tumor PD-L1 expression is used for stratification of non-small cell lung (NSCLC) patients, with tumor mutational burden (TMB) also being explored with promising results, and mismatch-repair deficiency is approved for tumor site-agnostic disease. While tumors with high PD-L1 expression, high TMB, or mismatch repair deficiency respond well to checkpoint blockade, tumors with lower PD-L1 expression, lower mutational burdens, or mismatch repair proficiency respond much less frequently. Case presentation We studied two patients with unexpected responses to checkpoint blockade monotherapy: a patient with PD-L1-negative and low mutational burden NSCLC and one with mismatch repair proficient colorectal cancer (CRC), both of whom lack the biomarkers associated with response to checkpoint blockade, yet achieved durable clinical benefit. Both maintained T-cell responses in peripheral blood to oncogenic driver mutations – BRAF-N581I in the NSCLC and AKT1-E17K in the CRC – years after treatment initiation. Mutation-specific T cells were also found in the primary tumor and underwent dynamic perturbations in the periphery upon treatment. Conclusions These findings suggest that T cell responses to oncogenic driver mutations may be more prevalent than previously appreciated and could be harnessed in immunotherapeutic treatment, particularly for patients who lack the traditional biomarkers associated with response. Comprehensive studies are warranted to further delineate additional predictive biomarkers and populations of patients who may benefit from checkpoint blockade
    corecore