7 research outputs found

    Association Study Among Candidate Genetic Polymorphisms and Chemotherapy-Related Severe Toxicity in Testicular Cancer Patients

    Get PDF
    Testicular cancer is one of the most commonly occurring malignant tumors in young men with fourfold higher rate of incidence and threefold higher mortality rates in Chile than the average global rates. Surgery is the initial line of treatment for testicular cancers, and is generally followed by chemotherapy, usually with combinations of bleomycin, etoposide, and cisplatin (BEP). However, the adverse effects of chemotherapy vary significantly among individuals; therefore, the present study explored the association of functionally significant allelic variations in genes related to the pharmacokinetics/pharmacodynamics of BEP and DNA repair enzymes with chemotherapy-induced toxicity in BEP-treated testicular cancer patients. We prospectively recruited 119 patients diagnosed with testicular cancer from 2010 to 2017. Genetic polymorphisms were analyzed using PCR and/or qPCR with TaqMan®probes. Toxicity was evaluated based on the Common Terminology Criteria for Adverse Events, v4.03. After univariate analyses to define more relevant genetic variants (p < 0.2) and clinical conditions in relation to severe (III–IV) adverse drug reactions (ADRs), stepwise forward multivariate logistic regression analyses were performed. As expected, the main severe ADRs associated with the non-genetic variables were hematological (neutropenia and leukopenia). Univariate statistical analyses revealed that patients with ERCC2 rs13181 T/G and/or CYP3A4 rs2740574 A/G genotypes are more likely to develop alopecia; patients with ERCC2 rs238406 C/C genotype may develop leukopenia, and patients with GSTT1-null genotype could develop lymphocytopenia (III–IV). Patients with ERCC2 rs1799793 A/A were at risk of developing severe anemia. The BLMH rs1050565 G/G genotype was found to be associated with pain, and the GSTP1 G/G genotype was linked infection (p < 0.05). Multivariate analysis showed an association between specific ERCC1/2 genotypes and cumulative dose of BEP drugs with the appearance of severe leukopenia and/or febrile neutropenia. Grades III–IV vomiting, nausea, and alopecia could be partly explained by the presence of specific ERCC1/2, MDR1, GSTP1, and BLMH genotypes (p < 0.05). Hence, we provide evidence for the usefulness of pharmacogenetics as a tool for predicting severe ADRs in testicular cancer patients treated with BEP chemotherapy

    Un examen actualizado de la percepción de las barreras para la implementación de la farmacogenómica y la utilidad de los pares fármaco/gen en América Latina y el Caribe

    Get PDF
    La farmacogenómica (PGx) se considera un campo emergente en los países en desarrollo. La investigación sobre PGx en la región de América Latina y el Caribe (ALC) sigue siendo escasa, con información limitada en algunas poblaciones. Por lo tanto, las extrapolaciones son complicadas, especialmente en poblaciones mixtas. En este trabajo, revisamos y analizamos el conocimiento farmacogenómico entre la comunidad científica y clínica de ALC y examinamos las barreras para la aplicación clínica. Realizamos una búsqueda de publicaciones y ensayos clínicos en este campo en todo el mundo y evaluamos la contribución de ALC. A continuación, realizamos una encuesta regional estructurada que evaluó una lista de 14 barreras potenciales para la aplicación clínica de biomarcadores en función de su importancia. Además, se analizó una lista emparejada de 54 genes/fármacos para determinar una asociación entre los biomarcadores y la respuesta a la medicina genómica. Esta encuesta se comparó con una encuesta anterior realizada en 2014 para evaluar el progreso en la región. Los resultados de la búsqueda indicaron que los países de América Latina y el Caribe han contribuido con el 3,44% del total de publicaciones y el 2,45% de los ensayos clínicos relacionados con PGx en todo el mundo hasta el momento. Un total de 106 profesionales de 17 países respondieron a la encuesta. Se identificaron seis grandes grupos de obstáculos. A pesar de los continuos esfuerzos de la región en la última década, la principal barrera para la implementación de PGx en ALC sigue siendo la misma, la "necesidad de directrices, procesos y protocolos para la aplicación clínica de la farmacogenética/farmacogenómica". Las cuestiones de coste-eficacia se consideran factores críticos en la región. Los puntos relacionados con la reticencia de los clínicos son actualmente menos relevantes. Según los resultados de la encuesta, los pares gen/fármaco mejor clasificados (96%-99%) y percibidos como importantes fueron CYP2D6/tamoxifeno, CYP3A5/tacrolimus, CYP2D6/opioides, DPYD/fluoropirimidinas, TMPT/tiopurinas, CYP2D6/antidepresivos tricíclicos, CYP2C19/antidepresivos tricíclicos, NUDT15/tiopurinas, CYP2B6/efavirenz y CYP2C19/clopidogrel. En conclusión, aunque la contribución global de los países de ALC sigue siendo baja en el campo del PGx, se ha observado una mejora relevante en la región. La percepción de la utilidad de las pruebas PGx en la comunidad biomédica ha cambiado drásticamente, aumentando la concienciación entre los médicos, lo que sugiere un futuro prometedor en las aplicaciones clínicas de PGx en ALC.Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region’s continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the “need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics”. Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%–99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC

    An Updated Examination of the Perception of Barriers for Pharmacogenomics Implementation and the Usefulness of Drug/Gene Pairs in Latin America and the Caribbean

    Get PDF
    Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region’s continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the “need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics”. Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%–99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC

    SPARC Induces E-Cadherin Repression and Enhances Cell Migration through Integrin αvβ3 and the Transcription Factor ZEB1 in Prostate Cancer Cells

    No full text
    Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, is a matricellular protein that modulates interactions between cells and their microenvironment. SPARC is expressed during extracellular matrix remodeling and is abundant in bone marrow and high-grade prostate cancer (PCa). In PCa, SPARC induces changes associated with epithelial–mesenchymal transition (EMT), enhancing migration and invasion and increasing the expression of EMT transcriptional factor Zinc finger E-box-binding homeobox 1 (ZEB1), but not Zinc finger protein SNAI1 (Snail) or Zinc finger protein SNAI2 (Slug). It is unknown whether the SPARC-induced downregulation of E-cadherin in PCa cells depends on ZEB1. Several integrins are mediators of SPARC effects in cancer cells. Because integrin signaling can induce EMT programs, we hypothesize that SPARC induces E-cadherin repression through the activation of integrins and ZEB1. Through stable knockdown and the overexpression of SPARC in PCa cells, we demonstrate that SPARC downregulates E-cadherin and increases vimentin, ZEB1, and integrin β3 expression. Knocking down SPARC in PCa cells decreases the tyrosine-925 phosphorylation of FAK and impairs focal adhesion formation. Blocking integrin αvβ3 and silencing ZEB1 revert both the SPARC-induced downregulation of E-cadherin and cell migration enhancement. We conclude that SPARC induces E-cadherin repression and enhances PCa cell migration through the integrin αvβ3/ZEB1 signaling pathway

    Association study among candidate genetic polymorphisms and chemotherapy-related severe toxicity in testicular cancer patients

    No full text
    Testicular cancer is one of the most commonly occurring malignant tumors in young men with fourfold higher rate of incidence and threefold higher mortality rates in Chile than the average global rates. Surgery is the initial line of treatment for testicular cancers, and is generally followed by chemotherapy, usually with combinations of bleomycin, etoposide, and cisplatin (BEP). However, the adverse effects of chemotherapy vary significantly among individuals; therefore, the present study explored the association of functionally significant allelic variations in genes related to the pharmacokinetics/pharmacodynamics of BEP and DNA repair enzymes with chemotherapy-induced toxicity in BEP-treated testicular cancer patients. We prospectively recruited 119 patients diagnosed with testicular cancer from 2010 to 2017. Genetic polymorphisms were analyzed using PCR and/or qPCR with TaqMan®probes. Toxicity was evaluated based on the Common Terminology Criteria for Adverse Events, v4.03. After univariate analyses to define more relevant genetic variants (p < 0.2) and clinical conditions in relation to severe (III-IV) adverse drug reactions (ADRs), stepwise forward multivariate logistic regression analyses were performed. As expected, the main severe ADRs associated with the non-genetic variables were hematological (neutropenia and leukopenia). Univariate statistical analyses revealed that patients with ERCC2 rs13181 T/G and/or CYP3A4 rs2740574 A/G genotypes are more likely to develop alopecia; patients with ERCC2 rs238406 C/C genotype may develop leukopenia, and patients with GSTT1-null genotype could develop lymphocytopenia (III-IV). Patients with ERCC2 rs1799793 A/A were at risk of developing severe anemia. The BLMH rs1050565 G/G genotype was found to be associated with pain, and the GSTP1 G/G genotype was linked infection (p < 0.05). Multivariate analysis showed an association between specific ERCC1/2 genotypes and cumulative dose of BEP drugs with the appearance of severe leukopenia and/or febrile neutropenia. Grades III-IV vomiting, nausea, and alopecia could be partly explained by the presence of specific ERCC1/2, MDR1, GSTP1, and BLMH genotypes (p < 0.05). Hence, we provide evidence for the usefulness of pharmacogenetics as a tool for predicting severe ADRs in testicular cancer patients treated with BEP chemotherapy

    Smartphone screen testing, a novel pre-diagnostic method to identify SARS-CoV-2 infectious individuals

    Get PDF
    The COVID-19 pandemic will likely take years to control globally, and constant epidemic surveillance will be required to limit the spread of SARS-CoV-2, especially considering the emergence of new variants that could hamper the effect of vaccination efforts. We developed a simple and robust - Phone Screen Testing (PoST) - method to detect SARS-CoV-2-positive individuals by RT-PCR testing of smartphone screen swab samples. We show that 81.3-100% of individuals with high-viral-load SARS-CoV-2 nasopharyngeal-positive samples also test positive for PoST, suggesting this method is effective in identifying COVID-19 contagious individuals. Furthermore, we successfully identified polymorphisms associated with SARS-CoV-2 Alpha, Beta, and Gamma variants, in SARS-CoV-2-positive PoST samples. Overall, we report that PoST is a new non-invasive, cost-effective, and easy-to-implement smartphone-based smart alternative for SARS-CoV-2 testing, which could help to contain COVID-19 outbreaks and identification of variants of concern in the years to come
    corecore