159 research outputs found
In Vivo Colonization of the Mouse Large Intestine and In Vitro Penetration of Intestinal Mucus by an Avirulent Smooth Strain of Salmonella typhimurium and Its Lipopolysaccharide-Deficient Mutant
The relative abilities of an avirulent Salmonella typhimurium strain with wild-type lipopolysaccharide (LPS) character, SL5319, and a nearly isogenic LPS-deficient mutant, SL5325, to colonize the large intestines of streptomycin-treated CD-1 mice in vivo and to penetrate colonic mucus in vitro were studied. Previously it had been shown that, when fed simultaneously to streptomycin-treated mice (approximately 1010 CFU each), the S. typhimurium strain with wild-type LPS colonized at 108 CFU/g of feces indefinitely, whereas the LPS-deficient mutant dropped within 3 days to a level of only 104 CFU/g of feces. In the present investigation, when SL5325 was allowed to colonize for 8 days before feeding mice SL5319 or when it was fed to mice simultaneously with an Escherichia coli strain of human fecal origin (1010 CFU each), both strains colonized indefinitely at 107 CFU/g of feces. Moreover, when the wild-type and LPS-deficient mutant strains were fed to mice simultaneously in low numbers (approximately 105 CFU each) the strains survived equally well in the large intestines for 8 days, after which the LPS-deficient mutant was eliminated (less than 102 CFU/g of feces), whereas the wild-type colonized at a level of 107 CFU/g of feces. In addition although both strains were able to adhere to mucus and epithelial cell preparations in vitro, the wild-type strain was shown to have greater motility and chemotactic activity on CD-1 mouse colonic mucus in vitro and to more rapidly penetrate and form a stable association with immobilized colonic mucosal components in vitro. Based on these data, we suggest that the ability of an S. typhimurium strain to colonize the streptomycin-treated mouse large intestine may, in part, depend on its ability to penetrate deeply into the mucus layer on the intestinal wall and subsequently, through growth, colonize the mucosa
Expression of Escherichia coli F-18 Type 1 Fimbriae in the Streptomycin-Treated Mouse Large Intestine
Escherichia coli F-18, isolated from the feces of a healthy human, makes type 1 fimbriae and is an excellent colonizer of the streptomycin-treated mouse large intestine. Recently, it was shown that the inability to produce type 1 fimbriae had no effect on the ability of E. coli F-18 to colonize the streptomycin-treated mouse large intestine, suggesting the possibility that E. coli F-18 does not express type 1 fimbriae in vivo. However, we show here that E. coli F-18 does express type 1 fimbriae in mouse cecal mucus in vivo and, in fact, appears to express substantially more type 1 fimbriae in cecal mucus in vivo than in L broth in vitro
Role of Motility and the \u3cem\u3eflhDC\u3c/em\u3e Operon in \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 Colonization of the Mouse Intestine
Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth
Role of Motility and the \u3cem\u3eflhDC\u3c/em\u3e Operon in \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 Colonization of the Mouse Intestine
Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth
l-Fucose Stimulates Utilization of d-Ribose by \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 ÎfucAO and \u3cem\u3eE. coli\u3c/em\u3e Nissle 1917 ÎfucAO Mutants in the Mouse Intestine and in M9 Minimal Medium
Escherichia coli MG1655 uses several sugars for growth in the mouse intestine. To determine the roles of l-fucose and d-ribose, an E. coli MG1655 ÎfucAO mutant and an E. coli MG1655 ÎrbsK mutant were fed separately to mice along with wild-type E. coli MG1655. The E. coli MG1655 ÎfucAO mutant colonized the intestine at a level 2 orders of magnitude lower than that of the wild type, but the E. coli MG1655 ÎrbsK mutant and the wild type colonized at nearly identical levels. Surprisingly, an E. coli MG1655 ÎfucAO ÎrbsK mutant was eliminated from the intestine by either wild-type E. coli MG1655 or E. coli MG1655 ÎfucAO, suggesting that the ÎfucAO mutant switches to ribose in vivo. Indeed, in vitro growth experiments showed that l-fucose stimulated utilization of d-ribose by the E. coli MG1655 ÎfucAO mutant but not by an E. coli MG1655 ÎfucK mutant. Since the ÎfucK mutant cannot convert l-fuculose to l-fuculose-1-phosphate, whereas the ÎfucAO mutant accumulates l-fuculose-1-phosphate, the data suggest that l-fuculose-1-phosphate stimulates growth on ribose both in the intestine and in vitro. An E. coli Nissle 1917 ÎfucAO mutant, derived from a human probiotic commensal strain, acted in a manner identical to that of E. coli MG1655 ÎfucAO in vivo and in vitro. Furthermore, l-fucose at a concentration too low to support growth stimulated the utilization of ribose by the wild-type E. coli strains in vitro. Collectively, the data suggest that l-fuculose-1-phosphate plays a role in the regulation of ribose usage as a carbon source by E. coli MG1655 and E. coli Nissle 1917 in the mouse intestine
Role of Gluconeogenesis and the Tricarboxylic Acid Cycle in the Virulence of \u3cem\u3eSalmonella enterica\u3c/em\u3e Serovar Typhimurium in BALB/c Mice
In Salmonella enterica serovar Typhimurium, the Cra protein (catabolite repressor/activator) regulates utilization of gluconeogenic carbon sources by activating transcription of genes in the gluconeogenic pathway, the glyoxylate bypass, the tricarboxylic acid (TCA) cycle, and electron transport and repressing genes encoding glycolytic enzymes. A serovar Typhimurium SR-11 Îcra mutant was recently reported to be avirulent in BALB/c mice via the peroral route, suggesting that gluconeogenesis may be required for virulence. In the present study, specific SR-11 genes in the gluconeogenic pathway were deleted (fbp, glpX, ppsA, and pckA), and the mutants were tested for virulence in BALB/c mice. The data show that SR-11 does not require gluconeogenesis to retain full virulence and suggest that as yet unidentified sugars are utilized by SR-11 for growth during infection of BALB/c mice. The data also suggest that the TCA cycle operates as a full cycle, i.e., a sucCD mutant, which prevents the conversion of succinyl coenzyme A to succinate, and an ÎsdhCDA mutant, which blocks the conversion of succinate to fumarate, were both attenuated, whereas both an SR-11 ÎaspA mutant and an SR-11 ÎfrdABC mutant, deficient in the ability to run the reductive branch of the TCA cycle, were fully virulent. Moreover, although it appears that SR-11 replenishes TCA cycle intermediates from substrates present in mouse tissues, fatty acid degradation and the glyoxylate bypass are not required, since an SR-11 ÎfadD mutant and an SR-11 ÎaceA mutant were both fully virulent
Glycolytic and Gluconeogenic Growth of \u3cem\u3eEscherichia coli\u3c/em\u3e O157:H7 (EDL933) and \u3cem\u3eE. coli\u3c/em\u3e K-12 (MG1655) in the Mouse Intestine
Escherichia coli EDL933, an O157:H7 strain, is known to colonize the streptomycin-treated CD-1 mouse intestine by growing in intestinal mucus (E. A. Wadolkowski, J. A. Burris, and A. D. O\u27Brien, Infect. Immun. 58:2438-2445, 1990), but what nutrients and metabolic pathways are employed during colonization has not been determined. In this study, when the wild-type EDL933 strain was fed to mice along with an EDL933 ÎppsA ÎpckA mutant, which is unable to utilize tricarboxylic acid cycle intermediates and gluconeogenic substrates for growth, both strains colonized the mouse intestine equally well. Therefore, EDL933 utilizes a glycolytic substrate(s) for both initial growth and maintenance when it is the only E. coli strain fed to the mice. However, in the presence of large numbers of MG1655, a K-12 strain, it is shown that EDL933 utilizes a glycolytic substrate(s) for initial growth in the mouse intestine but appears to utilize both glycolytic and gluconeogenic substrates in an attempt to maintain colonization. It is further shown that MG1655 predominantly utilizes glycolytic substrates for growth in the mouse intestine whether growing in the presence or absence of large numbers of EDL933. Data are presented showing that although small numbers of EDL933 grow to large numbers in the intestine in the presence of large numbers of MG1655 when both strains are fed to mice simultaneously, precolonization with MG1655 affords protection against subsequent colonization by EDL933. Moreover, in mice that are precolonized with EDL933, small numbers of MG1655 are able to grow rapidly in the intestine and EDL933 is eliminated. In situ hybridization experiments using E. coli-specific rRNA probes showed that while MG1655 is found only in mucus, EDL933 is found both in mucus and closely associated with intestinal epithelial cells. The data are discussed with respect to competition for nutrients and to the protection that some intestinal commensal E. coli strains might afford against infection by O157:H7 strains
Carbon nutrition of \u3cem\u3eEscherichia coli\u3c/em\u3e in the mouse intestine
Whole-genome expression profiling revealed Escherichia coli MG1655 genes induced by growth on mucus, conditions designed to mimic nutrient availability in the mammalian intestine. Most were nutritional genes corresponding to catabolic pathways for nutrients found in mucus. We knocked out several pathways and tested the relative fitness of the mutants for colonization of the mouse intestine in competition with their wild-type parent. We found that only mutations in sugar pathways affected colonization, not phospholipid and amino acid catabolism, not gluconeogenesis, not the tricarboxylic acid cycle, and not the pentose phosphate pathway. Gluconate appeared to be a major carbon source used by E. coli MG1655 to colonize, having an impact on both the initiation and maintenance stages. N-acetylglucosamine and N-acetylneuraminic acid appeared to be involved in initiation, but not maintenance. Glucuronate, mannose, fucose, and ribose appeared to be involved in maintenance, but not initiation. The in vitro order of preference for these seven sugars paralleled the relative impact of the corresponding metabolic lesions on colonization: gluconate \u3e N-acetylglucosamine \u3e N-acetylneuraminic acid = glucuronate \u3e mannose \u3e fucose \u3e ribose. The results of this systematic analysis of nutrients used by E. coli MG1655 to colonize the mouse intestine are intriguing in light of the nutrient-niche hypothesis, which states that the ecological niches within the intestine are defined by nutrient availability. Because humans are presumably colonized with different commensal strains, differences in nutrient availability may provide an open niche for infecting E. coli pathogens in some individuals and a barrier to infection in others
Stiripentol in D ravet syndrome: Results of a retrospective U . S . study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100157/1/epi12303.pd
RUNX super-enhancer control through the Notch pathway by Epstein-Barr virus transcription factors regulates B cell growth
In B cells infected by the cancer-associated Epstein-Barr virus (EBV), RUNX3 and RUNX1 transcription is manipulated to control cell growth. The EBV-encoded EBNA2 transcription factor (TF) activates RUNX3 transcription leading to RUNX3-mediated repression of the RUNX1 promoter and the relief of RUNX1-directed growth repression. We show that EBNA2 activates RUNX3 through a specific element within a â97 kb super-enhancer in a manner dependent on the expression of the Notch DNA-binding partner RBP-J. We also reveal that the EBV TFs EBNA3B and EBNA3C contribute to RUNX3 activation in EBV-infected cells by targeting the same element. Uncovering a counter-regulatory feed-forward step, we demonstrate EBNA2 activation of a RUNX1 super-enhancer (â139 to â250 kb) that results in low-level RUNX1 expression in cells refractory to RUNX1-mediated growth inhibition. EBNA2 activation of the RUNX1 super-enhancer is also dependent on RBP-J. Consistent with the context-dependent roles of EBNA3B and EBNA3C as activators or repressors, we find that these proteins negatively regulate the RUNX1 super-enhancer, curbing EBNA2 activation. Taken together our results reveal cell-type-specific exploitation of RUNX gene super-enhancers by multiple EBV TFs via the Notch pathway to fine tune RUNX3 and RUNX1 expression and manipulate B-cell growth
- âŠ