20 research outputs found

    Pulsed lava effusion at Mount Etna during 2001

    No full text
    Effusion rate and degassing data collected at Mt. Etna volcano (Italy) in 2001 show variations occurring on time scales of hours to months. We use both long- and short-term data sets spanning January to August to identify this variation. The long data sets comprise a satellite- and ground-based time series of effusion rates, and the latter include field-based effusion rate and degassing data collected May 29–31. The satellite-derived effusion rates for January through August reveal four volumetric pulses that are characterized by increasing mean effusion rate values and lead up to the 2001 flank eruption. Peak effusion rates during these 23–57 day pulses were 1.2 m3 s-1 in Pulse 1 (1 Jan–4 Mar), 1.1 m3 s-1 in Pulse 2 (5 Mar–21 Apr), 4.2 m3 s-1 in Pulse 3 (24 Apr–18 Jun), 8.8 m3 s-1 in Pulse 4 (23 Jun–16 Jul), and 22.2 m3 s-1 during the flank eruption (17 Jul–9 Aug). Rank-order analysis of the satellite data shows that effusion rate values during the 2001 flank eruption define a statistically different trend than Etna's persistent activity from Jan 1 to Jul 17. Data prior to the flank eruption obey a power-law relationship that may define an effusion rate threshold of ~3–5 m3 s-1 for Etna's typical persistent activity. Our short-term data coincide with the satellite-derived peak effusion period of Pulse 3. Degassing (at-vent puff frequency) shows a general increase from May 29 to 31, with hour-long variations in both puff frequency and lava flow velocity (effusion rate). We identify five 3–14 h degassing periods that contain 26 shorter (19–126 min-long) oscillations. This variation shows some positive correlation with effusion rate measurements during the same time period. If a relationship between puff frequency and effusion rate is valid, we propose that their short-term variation is the result of changes in the supply rate of magma to the near-vent conduit system. Therefore, these short-term data provide some evidence that the clear weeks- to months-long variation in Etna's effusive activity (January–August 2001) was overprinted by a minutes- to hour-scale oscillation in shallow supply.Published231-246partially_ope

    The Dynamic Response of Etnean Sand and the Effect of Its Impingement on Ti-6Al-4 V Alloy

    No full text
    Quasi static and dynamic experiments were conducted to characterise the mechanical response of Etnean volcanic sand. Stress and strain histories were measured in near-uniaxial strain and near-uniaxial stress conditions at strain rates ranging between 5·10 −4 and 1.5·10 3 s −1 using bespoke experimental setups. The effects of the lateral confinement and initial consolidation state were assessed. Etnean volcanic sand exhibited a noticeable strain rate dependent behaviour when characterised in its loose consolidation state but not when densely packed before loading. The effect of volcanic particles impingement on Ti-6Al-4 V alloy was assessed by conducting dynamic experiments at different incident angles using targets of different geometry. The texture of thus eroded surfaces was analyzed by means of non-contact 3D-profilometry. The surface analysis provided insights on the erosion mechanisms and quantitative data on the roughness increment caused by the collision and rubbing with volcanic sand

    A statistical-based approach for determining the intensity of unrest phases at Stromboli volcano (Southern Italy) using one-step-ahead forecasts of displacement time series

    No full text
    The evaluation of the intensity of unrest phases at active volcanoes is a crucial topic in volcano hazard studies. This is particularly troublesome in the case of persistently active volcanoes like Stromboli (Southern Italy), where intense eruptive summit activity (overflows, strong spattering, powerful explosions) has in some cases anticipated a flank eruption. In this context, a new approach for the analysis of displacement data is introduced. Daily displacements of the Stromboli crater terrace measured between January 1, 2010, and August 7, 2014, by a ground-based interferometric synthetic aperture radar system were compared, in retrospect, to displacement predictions provided by an autoregressive integrated moving average-based model. The methodology consisted in assessing when the actual displacements exceeded a fixed probability threshold for the forecasts (*95 %). Two sets of data were consequently produced: (1) series of residuals between actual displacements and model threshold (‘‘anomalies’’) and (2) series of normalized residuals between actual displacements and model threshold (‘‘normalized anomalies’’). This permitted to statistically identify and quantify the anomalous deformation at the crater terrace over the reference time interval of the analysis. Anomalies started to occur before each period of intense volcanic activity, highlighting the possibility to discern between background activity and unrest. Moreover, results indicated that the inflation of the crater terrace during the preparatory phase of the 2014 flank eruption was characterized by the greatest amount of anomalous deformation
    corecore