148 research outputs found

    Baryonic contributions to the dilepton spectrum of nucleon-nucleon collisions

    Full text link
    We study the production of dileptons in relativistic nucleon-nucleon collisions. Additionally to the traditional dilepton production channels (vector meson decays, meson and Delta(1232) Dalitz decays) we included in our model as new dilepton sources the Dalitz decay of higher unflavored baryon resonances with spin<=5/2 and mass<=2.25 GeV/c^2. The contributions of these new channels are estimated using experimental information about the Ngamma decays of the resonances and have large uncertainties. The obtained dilepton spectra are compared to the experimental data by the DLS collaboration. Predictions for the HADES detector (SIS, GSI) are also discussed. In spite of the large uncertainties of the higher resonance Dalitz decay contributions we are able to draw the conclusion that these contributions are negligible compared to the other dilepton sources and do not influence the detectability of the phi and omega vector meson peaks.Comment: 9 pages, 4 figures, version accepted for publication in Phys. Rev.

    Hadronic Contributions to the Muon g−2g-2 and Low-Energy QCD

    Full text link
    The contributions to the muon anomalous magnetic moment from hadronic vacuum polarization and from hadronic light-by-light scattering are reexamined within the frame work of chiral perturbation theory; the 1/Nc1/N_c-expansion; and the extended Nambu Jona-Lasinio model of low-energy QCD.Comment: 17 pages, CPT-93/P.2962, 4 figures available by request from the autho

    Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli.

    Get PDF
    Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli (VTEC). In Denmark, the Statens Serum Institut (SSI) routinely receives all suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing, and determination of phylogenetic relationship, and a specific VirulenceFinder for detection of E. coli virulence genes was developed as part of this study. In total, 46 suspected VTEC isolates were characterized in parallel during the study. VirulenceFinder proved successful in detecting virulence genes included in routine typing, explicitly verocytotoxin 1 (vtx1), verocytotoxin 2 (vtx2), and intimin (eae), and also detected additional virulence genes. VirulenceFinder is also a robust method for assigning verocytotoxin (vtx) subtypes. A real-time clustering of isolates in agreement with the epidemiology was established from WGS, enabling discrimination between sporadic and outbreak isolates. Overall, WGS typing produced results faster and at a lower cost than the current routine. Therefore, WGS typing is a superior alternative to conventional typing strategies. This approach may also be applied to typing and surveillance of other pathogens

    Genomic Content of Bordetella pertussis Clinical Isolates Circulating in Areas of Intensive Children Vaccination

    Get PDF
    BACKGROUND: The objective of the study was to analyse the evolution of Bordetella pertussis population and the influence of herd immunity in different areas of the world where newborns and infants are highly vaccinated. METHODOLOGY: The analysis was performed using DNA microarray on 15 isolates, PCR on 111 isolates as well as GS-FLX sequencing technology on 3 isolates and the B. pertussis reference strain, Tohama I. PRINCIPAL FINDINGS: Our analyses demonstrate that the current circulating isolates are continuing to lose genetic material as compared to isolates circulating during the pre-vaccine era whatever the area of the world considered. The lost genetic material does not seem to be important for virulence. Our study confirms that the use of whole cell vaccines has led to the control of isolates that were similar to vaccine strains. GS-FLX sequencing technology shows that current isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era and that the sequenced strain Tohama I is not representative of the isolates. Furthermore, this technology allowed us to observe that the number of Insertion Sequence elements contained in the genome of the isolates is temporally increasing or varying between isolates. CONCLUSIONS: B. pertussis adaptation to humans is still in progress by losing genetic material via Insertion Sequence elements. Furthermore, recent isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era. Herd immunity, following intensive vaccination of infants and children with whole cell vaccines, has controlled isolates similar to the vaccine strains without modifying significantly the virulence of the isolates. With the replacement of whole cell vaccines by subunit vaccines, containing only few bacterial antigens targeting the virulence of the bacterium, one could hypothesize the circulation of isolates expressing less or modified vaccine antigens

    Taxonomic Abstract for the species.

    No full text
    • …
    corecore