97 research outputs found

    Improved Immunodetection of Endogenous α-Synuclein

    Get PDF
    α-Synuclein is a key molecule in understanding the pathogenesis of neurodegenerative α-synucleinopathies such as Parkinson's disease. Despite extensive research, however, its precise function remains unclear partly because of a difficulty in immunoblotting detection of endogenous α-synuclein. This difficulty has largely restricted the progress for α-synucleinopathy research. Here, we report that α-synuclein monomers tend to easily detach from blotted membranes, resulting in no or very poor detection. To prevent this detachment, a mild fixation of blotted membranes with paraformaldehyde was applied to the immunoblotting method. Amazingly, this fixation led to clear and strong detection of endogenous α-synuclein, which has been undetectable by a conventional immunoblotting method. Specifically, we were able to detect endogenous α-synuclein in various human cell lines, including SH-SY5Y, HEK293, HL60, HeLa, K562, A375, and Daoy, and a mouse cell line B16 as well as in several mouse tissues such as the spleen and kidney. Moreover, it should be noted that we could clearly detect endogenous α-synuclein phosphorylated at Ser-129 in several human cell lines. Thus, in some tissues and cultured cells, endogenous α-synuclein becomes easily detectable by simply fixing the blotted membranes. This improved immunoblotting method will allow us to detect previously undetectable endogenous α-synuclein, thereby facilitating α-synuclein research

    Hand use predicts the structure of representations in sensorimotor cortex.

    Get PDF
    Fine finger movements are controlled by the population activity of neurons in the hand area of primary motor cortex. Experiments using microstimulation and single-neuron electrophysiology suggest that this area represents coordinated multi-joint, rather than single-finger movements. However, the principle by which these representations are organized remains unclear. We analyzed activity patterns during individuated finger movements using functional magnetic resonance imaging (fMRI). Although the spatial layout of finger-specific activity patterns was variable across participants, the relative similarity between any pair of activity patterns was well preserved. This invariant organization was better explained by the correlation structure of everyday hand movements than by correlated muscle activity. This also generalized to an experiment using complex multi-finger movements. Finally, the organizational structure correlated with patterns of involuntary co-contracted finger movements for high-force presses. Together, our results suggest that hand use shapes the relative arrangement of finger-specific activity patterns in sensory-motor cortex

    Understanding human functioning using graphical models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functioning and disability are universal human experiences. However, our current understanding of functioning from a comprehensive perspective is limited. The development of the International Classification of Functioning, Disability and Health (ICF) on the one hand and recent developments in graphical modeling on the other hand might be combined and open the door to a more comprehensive understanding of human functioning. The objective of our paper therefore is to explore how graphical models can be used in the study of ICF data for a range of applications.</p> <p>Methods</p> <p>We show the applicability of graphical models on ICF data for different tasks: Visualization of the dependence structure of the data set, dimension reduction and comparison of subpopulations. Moreover, we further developed and applied recent findings in causal inference using graphical models to estimate bounds on intervention effects in an observational study with many variables and without knowing the underlying causal structure.</p> <p>Results</p> <p>In each field, graphical models could be applied giving results of high face-validity. In particular, graphical models could be used for visualization of functioning in patients with spinal cord injury. The resulting graph consisted of several connected components which can be used for dimension reduction. Moreover, we found that the differences in the dependence structures between subpopulations were relevant and could be systematically analyzed using graphical models. Finally, when estimating bounds on causal effects of ICF categories on general health perceptions among patients with chronic health conditions, we found that the five ICF categories that showed the strongest effect were plausible.</p> <p>Conclusions</p> <p>Graphical Models are a flexible tool and lend themselves for a wide range of applications. In particular, studies involving ICF data seem to be suited for analysis using graphical models.</p

    Bayesian probabilistic network modeling from multiple independent replicates

    Get PDF
    Often protein (or gene) time-course data are collected for multiple replicates. Each replicate generally has sparse data with the number of time points being less than the number of proteins. Usually each replicate is modeled separately. However, here all the information in each of the replicates is used to make a composite inference about signal networks. The composite inference comes from combining well structured Bayesian probabilistic modeling with a multi-faceted Markov Chain Monte Carlo algorithm. Based on simulations which investigate many different types of network interactions and experimental variabilities, the composite examination uncovers many important relationships within the networks. In particular, when the edge's partial correlation between two proteins is at least moderate, then the composite's posterior probability is large

    Long Chain Polyunsaturated Fatty Acid Supplementation in Infancy Reduces Heart Rate and Positively Affects Distribution of Attention

    Get PDF
    A double-blind, randomized, controlled, parallel-group prospective trial was conducted to determine whether a dose-response existed for four different levels of docosahexaenoic acid (DHA) supplementation on the cognitive performance of infants. A total of 122 term infants were fed one of four different formulas varying in their DHA composition (0.00%, 0.32%, 0.64% and 0.96% of total fatty acids as DHA) from birth to 12 months. The three DHA-supplemented formulas also contained 0.64% of total fatty acids as arachidonic acid (ARA, 20:4n-6). Infants were tested at 4, 6, and 9 months of age on a visual habituation protocol that yielded both behavioral and psychophysiological indices of attention. Infants in all DHA+ARA-supplemented conditions had lower heart rates than those in the unsupplemented condition; there was no dose-response for this effect. The distribution of time that infants spent in different phases of attention (a cognitive index derived from the convergence of behavioral and cardiac responses) varied as a function of dosage. Infants supplemented at the two lower DHA doses spent proportionately more time engaged in active stimulus processing than infants fed the unsupplemented formula, while infants fed the highest dose were intermediate and did not differ from any other group

    An SK3 Channel/nWASP/Abi-1 Complex Is Involved in Early Neurogenesis

    Get PDF
    BACKGROUND: The stabilization or regulated reorganization of the actin cytoskeleton is essential for cellular structure and function. Recently, we could show that the activation of the SK3-channel that represents the predominant SK-channel in neural stem cells, leads to a rapid local outgrowth of long filopodial processes. This observation indicates that the rearrangement of the actin based cytoskeleton via membrane bound SK3-channels might selectively be controlled in defined micro compartments of the cell. PRINCIPAL FINDINGS: We found two important proteins for cytoskeletal rearrangement, the Abelson interacting protein 1, Abi-1 and the neural Wiskott Aldrich Syndrome Protein, nWASP, to be in complex with SK3- channels in neural stem cells (NSCs). Moreover, this interaction is also found in spines and postsynaptic compartments of developing primary hippocampal neurons and regulates neurite outgrowth during early phases of differentiation. Overexpression of the proteins or pharmacological activation of SK3 channels induces obvious structural changes in NSCs and hippocampal neurons. In both neuronal cell systems SK3 channels and nWASP act synergistic by strongly inducing filopodial outgrowth while Abi-1 behaves antagonistic to its interaction partners. CONCLUSIONS: Our results give good evidence for a functional interplay of a trimeric complex that transforms incoming signals via SK3-channel activation into the local rearrangement of the cytoskeleton in early steps of neuronal differentiation involving nWASP and Abi-1 actin binding proteins

    Does the routine use of global coronary heart disease risk scores translate into clinical benefits or harms? A systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Guidelines now recommend routine assessment of global coronary heart disease (CHD) risk scores. We performed a systematic review to assess whether global CHD risk scores result in clinical benefits or harms.</p> <p>Methods</p> <p>We searched MEDLINE (1966 through June 13, 2007) for articles relevant to our review. Using predefined inclusion and exclusion criteria, we included studies of any design that provided physicians with global risk scores or allowed them to calculate scores themselves, and then measured clinical benefits and/or harms. Two reviewers reviewed potentially relevant studies for inclusion and resolved disagreement by consensus. Data from each article was then abstracted into an evidence table by one reviewer and the quality of evidence was assessed independently by two reviewers.</p> <p>Results</p> <p>11 studies met criteria for inclusion in our review. Six studies addressed clinical benefits and 5 addressed clinical harms. Six studies were rated as "fair" quality and the others were deemed "methodologically limited". Two fair quality studies showed that physician knowledge of global CHD risk is associated with increased prescription of cardiovascular drugs in high risk (but not all) patients. Two additional fair quality studies showed no effect on their primary outcomes, but one was underpowered and the other focused on prescribing of lifestyle changes, rather than drugs whose prescribing might be expected to be targeted by risk level. One of these aforementioned studies showed improved blood pressure in high-risk patients, but no improvement in the proportion of patients at high risk, perhaps due to the high proportion of participants with baseline risks significantly exceeding the risk threshold. Two fair quality studies found no evidence of harm from patient knowledge of global risk scores when they were accompanied by counseling, and optional or scheduled follow-up. Other studies were too methodologically limited to draw conclusions.</p> <p>Conclusion</p> <p>Our review provides preliminary evidence that physicians' knowledge of global CHD risk scores may translate into modestly increased prescribing of cardiovascular drugs and modest short-term reductions in CHD risk factors without clinical harm. Whether these results are replicable, and translate across other practice settings or into improved long-term CHD outcomes remains to be seen.</p

    Simultaneous Genome-Wide Inference of Physical, Genetic, Regulatory, and Functional Pathway Components

    Get PDF
    Biomolecular pathways are built from diverse types of pairwise interactions, ranging from physical protein-protein interactions and modifications to indirect regulatory relationships. One goal of systems biology is to bridge three aspects of this complexity: the growing body of high-throughput data assaying these interactions; the specific interactions in which individual genes participate; and the genome-wide patterns of interactions in a system of interest. Here, we describe methodology for simultaneously predicting specific types of biomolecular interactions using high-throughput genomic data. This results in a comprehensive compendium of whole-genome networks for yeast, derived from ∼3,500 experimental conditions and describing 30 interaction types, which range from general (e.g. physical or regulatory) to specific (e.g. phosphorylation or transcriptional regulation). We used these networks to investigate molecular pathways in carbon metabolism and cellular transport, proposing a novel connection between glycogen breakdown and glucose utilization supported by recent publications. Additionally, 14 specific predicted interactions in DNA topological change and protein biosynthesis were experimentally validated. We analyzed the systems-level network features within all interactomes, verifying the presence of small-world properties and enrichment for recurring network motifs. This compendium of physical, synthetic, regulatory, and functional interaction networks has been made publicly available through an interactive web interface for investigators to utilize in future research at http://function.princeton.edu/bioweaver/

    Differential Cerebral Cortex Transcriptomes of Baboon Neonates Consuming Moderate and High Docosahexaenoic Acid Formulas

    Get PDF
    BACKGROUND: Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS: Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; “L”, LCPUFA, with 0.33%DHA-0.67%ARA; “L3”, LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS: These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA
    corecore