21 research outputs found

    Low-Noise Dynamic Reconstruction for X-Ray Tomographic Perfusion Studies Using Low Sampling Rates

    Get PDF
    Functional imaging based on tomographic X-ray imaging relies on the reconstruction of a temporal sequence of images which accurately reproduces the time attenuation curves of the tissue. The main constraints of these techniques are temporal resolution and dose. Using current techniques the data acquisition has to be performed fast so that the dynamic attenuation values can be regarded as static during the scan. Due to the relatively high number of repeated scans the dose per single scan has to be low yielding a poor signal-to-noise ratio (SNR) in the reconstructed images. In a previous publication a temporal interpolation scheme in the projection data space was relaxing the temporal resolution constraint. The aim of this contribution is the improvement of the SNR. A temporal smoothing term is introduced in the temporal interpolation scheme such that only the physiologic relevant bandwidth is considered. A significant increase of the SNR is achieved. The obtained level of noise only depends on the total dose applied and is independent of the number of scans and the SNR of a single reconstructed image. The approach might be the first step towards using slowly rotating CT systems for perfusion imaging like C-arm or small animal CT scanners

    Exact Consideration Of Data Redundancies For Spiral Cone-Beam Ct

    No full text
    In multi-slice spiral computed tomography (CT) there is an obvious trend in adding more and more detector rows. The goals are numerous: volume coverage, isotropic spatial resolution, and speed. Consequently, there will be a variety of scan protocols optimizing clinical applications. Flexibility in table feed requires consideration of data redundancies to ensure efficient detector usage. Until recently this was achieved by approximate reconstruction algorithms only. However, due to the increasing cone angles there is a need of exact treatment of the cone beam geometry. A new, exact and efficient 3-PI algorithm for considering three-fold data redundancies was derived from a general, theoretical framework based on 3D Radon inversion using Grangeat\u27s formula. The 3-PI algorithm possesses a simple and efficient structure. This publication deals with a thorough evaluation of the performance of the 3-PI algorithm in comparison to the 1-PI method for non-redundant data. Image quality of the 3-PI algorithm is superior. The prominent spiral artifacts and other discretization artifacts are significantly reduced due to averaging effects when taking into account redundant data. Certainly signal-to-noise ratio is increased. The computational expense is comparable even to that of approximate algorithms. The 3-PI algorithm proves its practicability for applications in medical imaging

    Interventional 4D motion estimation and reconstruction of cardiac vasculature without motion periodicity assumption. Medical Image Analysis 2010;14:687–94

    No full text
    Abstract. Anatomical and functional information of cardiac vasculature is a key component of future developments in the field of interventional cardiology. With the technology of C-arm CT it is possible to reconstruct intraprocedural 3-D images from angiographic projection data. Current approaches attempt to add the temporal dimension (4-D) by ECG-gating in order to distinct physical states of the heart. This model assumes that the heart motion is periodic. However, frequently arrhytmic heart signals are observed in a clinical environment. In addition breathing motion can still occur. We present a reconstruction method based on a 4-D time-continuous motion field which is parameterized by the acquisition time and not the quasi-periodic heart phase. The output of our method is twofold. It provides a motion compensated 3-D reconstruction (anatomic information) and a motion field (functional information). In a physical phantom experiment a vessel of size 3.08 mm undergoing a non-periodic motion was reconstructed. The resulting diameters were 3.42 mm and 1.85 mm assuming non-periodic and periodic motion, respectively. Further, for two clinical cases (coronary arteries and coronary sinus) it is demonstrated that the presented algorithm outperforms periodic approaches and is able to handle realistic irregular heart motion.
    corecore