16 research outputs found
Implementing two-photon interference in the frequency domain with electro-optic phase modulators
Frequency-entangled photons can be readily produced using parametric
down-conversion. We have recently shown how such entanglement could be
manipulated and measured using electro-optic phase modulators and narrow-band
frequency filters, thereby leading to two-photon interference patterns in the
frequency domain. Here we introduce new theoretical and experimental
developments showing that this method is potentially a competitive platform for
the realization of quantum communication protocols in standard
telecommunication fibres. We derive a simple theoretical expression for the
coincidence probabilities and use it to optimize a Bell inequality.
Furthermore, we establish an equivalence between the entangled- photon scheme
and a classical interference scheme. Our measurements of two-photon
interference in the frequency domain yield raw visibilities in excess of 99%.
We use our high quality setup to experimentally validate the theoretical
predictions, and in particular we report a violation of the CH74 inequality by
more than 18 standard deviations.Comment: 19 pages, 3 figure
Manipulation de photons intriqués en fréquence
Les pères fondateurs de la mĂ©canique quantique exploraient les implications de leur thĂ©orie avec des "expĂ©riences de pensĂ©e". Les amĂ©liorations continuelles en matière de manipulation de systèmes quantiques individuels ont ouvert la voie Ă des recherches thĂ©oriques et expĂ©rimentales. C'est la base de l'information quantique: quand un contenu informationnel est associĂ© Ă des transformations et mesures sur des systèmes quantiques, cela offre un nouveau paradigme Ă la thĂ©orie de l'information. Une des promesses de l'information quantique est la rĂ©alisation d'un internet quantique: des liaisons quantiques permettraient de partager des Ă©tats quantiques entre les noeuds du rĂ©seau. Le contexte de notre travail est l'optique quantique expĂ©rimentale dans des fibres optiques aux longueurs d'onde des tĂ©lĂ©communications, avec comme perspective des applications en communication quantique. Nous dĂ©montrons une nouvelle mĂ©thode pour manipuler des photons intriquĂ©s en Ă©nergie-temps, en utilisant des composants fibrĂ©s et optoĂ©lectroniques standard. Les photons produits par paires par une source de conversion paramĂ©trique sont envoyĂ©s dans des modulateurs de phase Ă©lectro-optiques indĂ©pendants, qui agissent comme des diviseurs de faisceau en frĂ©quence. Nous utilisons ensuite des filtres frĂ©quentiels et des dĂ©tecteurs de photons uniques pour discriminer les frĂ©quences des photons. Nos rĂ©sultats expĂ©rimentaux incluent l'obtention d'interfĂ©rences Ă deux photons robustes, Ă haute visibilitĂ© et Ă haute dimension, qui permettent la violation d'inĂ©galitĂ©s de Bell. Cela montre qu'une telle "intrication en bins frĂ©quentiels" est une plate-forme intĂ©ressante pour la communication Quantique.The founding fathers of quantum mechanics explored the implications of their theory with "gedanken experiments". Continuous improvement of the experimental manipulation of individual quantum systems has opened the way to exciting research, both on blackboards and in laboratories. lt is the basis for quantum information processing : when an information content is associated with transformations and measurements of quantum systems, it offers a new paradigm, full of potentialities, to information theory. One of the promises of quantum information is the realization of a quantum internet: quantum communication links would allow to share quantum states between the nodes of the network.Our work lies in the context of experimental quantum optics in optical fibers at telecommunication wavelengths, in view of quantum communication applications. We demonstrate a new method for manipulating photons entangled in their energy-time degree of freedom, by using standard fiber-optic and optoelectronic components. The photon pairs produced by a parametric down-conversion source are sent through independent electroÂoptic phase modulators, which act as high-dimensional frequency beam splitters. We then use frequency filters and single-photon detectors to discriminate the frequencies of the photons. Our experimental results include robust, high-visibility and high-dimensional twoÂphoton interference patterns allowing Bell inequality violations. This shows that such a "frequency -bin entanglement" provides an interesting platform for quantum communication
Manipulation de photons intriqués en fréquence
The founding fathers of quantum mechanics explored the implications of their theory with "gedanken experiments". Continuous improvement of the experimental manipulation of individual quantum systems has opened the way to exciting research, both on blackboards and in laboratories. lt is the basis for quantum information processing : when an information content is associated with transformations and measurements of quantum systems, it offers a new paradigm, full of potentialities, to information theory. One of the promises of quantum information is the realization of a quantum internet: quantum communication links would allow to share quantum states between the nodes of the network.Our work lies in the context of experimental quantum optics in optical fibers at telecommunication wavelengths, in view of quantum communication applications. We demonstrate a new method for manipulating photons entangled in their energy-time degree of freedom, by using standard fiber-optic and optoelectronic components. The photon pairs produced by a parametric down-conversion source are sent through independent electroÂoptic phase modulators, which act as high-dimensional frequency beam splitters. We then use frequency filters and single-photon detectors to discriminate the frequencies of the photons. Our experimental results include robust, high-visibility and high-dimensional twoÂphoton interference patterns allowing Bell inequality violations. This shows that such a "frequency -bin entanglement" provides an interesting platform for quantum communication.Les pères fondateurs de la mĂ©canique quantique exploraient les implications de leur thĂ©orie avec des "expĂ©riences de pensĂ©e". Les amĂ©liorations continuelles en matière de manipulation de systèmes quantiques individuels ont ouvert la voie Ă des recherches thĂ©oriques et expĂ©rimentales. C'est la base de l'information quantique: quand un contenu informationnel est associĂ© Ă des transformations et mesures sur des systèmes quantiques, cela offre un nouveau paradigme Ă la thĂ©orie de l'information. Une des promesses de l'information quantique est la rĂ©alisation d'un internet quantique: des liaisons quantiques permettraient de partager des Ă©tats quantiques entre les noeuds du rĂ©seau. Le contexte de notre travail est l'optique quantique expĂ©rimentale dans des fibres optiques aux longueurs d'onde des tĂ©lĂ©communications, avec comme perspective des applications en communication quantique. Nous dĂ©montrons une nouvelle mĂ©thode pour manipuler des photons intriquĂ©s en Ă©nergie-temps, en utilisant des composants fibrĂ©s et optoĂ©lectroniques standard. Les photons produits par paires par une source de conversion paramĂ©trique sont envoyĂ©s dans des modulateurs de phase Ă©lectro-optiques indĂ©pendants, qui agissent comme des diviseurs de faisceau en frĂ©quence. Nous utilisons ensuite des filtres frĂ©quentiels et des dĂ©tecteurs de photons uniques pour discriminer les frĂ©quences des photons. Nos rĂ©sultats expĂ©rimentaux incluent l'obtention d'interfĂ©rences Ă deux photons robustes, Ă haute visibilitĂ© et Ă haute dimension, qui permettent la violation d'inĂ©galitĂ©s de Bell. Cela montre qu'une telle "intrication en bins frĂ©quentiels" est une plate-forme intĂ©ressante pour la communication Quantique
Bell Inequality Violation in Frequency Domain using 25 GHz Frequency Sideband Modulation Architecture
Poster ED_P3_THUinfo:eu-repo/semantics/publishe
Creating and manipulating entangled optical qubits in the frequency domain
International audienceRadio-frequency phase modulation of frequency-entangled photons leads to a two-photon interference pattern in the frequency domain. In recent experiments, the pattern was measured with narrow-band frequency filters which select photons belonging to a given frequency bin. Here we show how photons can be grouped into even and odd frequencies by using periodic frequency filters called interleavers. In our theoretical analysis we show how this reduces the high-dimensional photon state to an effective two-dimensional state. This is of interest for applications such as quantum cryptography or low-dimensional tests of quantum nonlocality. We then report an experimental realization of this proposal. The observed two-photon interference pattern and violation of the CHSH inequality—the simplest binary-outcome Bell inequality—are in good agreement with the theoretical predictions
Creation and manipulation of two-dimensional photonic frequency entanglement
info:eu-repo/semantics/publishe
Creating and manipulating entangled optical qubits in the frequency domain
info:eu-repo/semantics/publishe
Propagation and survival of frequency-bin entangled photons in metallic nanostructures
International audienceWe report on the design of two plasmonic nanos-tructures and the propagation of frequency-bin entangled photons through them. The experimental findings clearly show the robustness of frequency-bin entangle-ment, which survives after interactions with both a hybrid plasmo-photonic structure, and a nano-pillar array. These results confirm that quantum states can be encoded into the collective motion of a many-body electronic system without demolishing their quantum nature, and pave the way towards applications of plasmonic structures in quantum information
Propagation and survival of frequency-bin entangled photons in metallic nanostructures
We report on the design of two plasmonic nanostructures and the propagation of
frequency-bin entangled photons through them. The experimental findings clearly
show the robustness of frequency-bin entanglement, which survives after
interactions with both a hybrid plasmo-photonic structure, and a nano-pillar
array. These results confirm that quantum states can be encoded into the
collective motion of a many-body electronic system without demolishing their
quantum nature, and pave the way towards applications of plasmonic structures in
quantum information