33 research outputs found

    Magnetic resonance elastography for the non-invasive staging of liver fibrosis

    No full text
    In this study, we have first described the normal liver structure including the hepatic acinus that is characterized by its structural and functional heterogeneity. Second, we have addressed the pathogenesis of liver fibrosis: the major source of excess extracellular matrix appears to be perisinusoidal stellate cells. The concept of reversibility of liver fibrosis opens the way for new therapeutic perspectives. We have then analyzed the different methods of assessment of liver fibrosis. Liver biopsy is the current reference standard. However, it is invasive and subject to sampling error. Consequently, many attempts are made to develop non-invasive tests: biochemical tests and imaging methods, including functional MR imaging with perfusion, diffusion or spectroscopy, have been proposed. Among the imaging methods, elastography by measuring directly the liver stiffness appears as one of the most promising techniques. Lastly, we have described our research that was focused on MR elastography. Our results show that MR elastography is a feasible, accurate and reproducible method to stage liver fibrosis, and that it is superior to biochemical testing with aspartate-to-platelets ratio index and ultrasound elastography to stage liver fibrosis. Further studies remain to be done to decrease the long examination time of MR elastography and, consequently, to integrate it into a comprehensive hepatic MR protocol.(MED 3) -- UCL, 200

    L' appendice normal en tomodensitométrie

    No full text
    PARIS5-BU MĂ©d.Cochin (751142101) / SudocPARIS-BIUM (751062103) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF

    Imagerie par résonance magnétique de l’angiogenèse tumorale

    No full text
    Tumor angiogenesis induces the proliferation of immature blood vessels that are both heterogeneous and leaky. These characteristics can be demonstrated by measuring the perfusion parameters with MRI. Perfusion MRI is usually performed with in T1-weighted dynamic imaging after bolus injection of an exogenous contrast agent such as gadolinium chelate. The perfusion parameters are obtained by semi-quantitative or quantitative analysis of the enhancement curves in the tumor and the arterial input. Perfusion can also be assessed without injecting a contrast agent using arterial spin labeling techniques, diffusion MRI, or BOLD (blood oxygen level dependent) MRI. However, these latter methods are limited by a low signal-to-noise ratio and problems with quantification. The main indication for perfusion MRI is the assesment of antiangiogenic and aritivascular treatments. New possibilities for demonstrating angiogenic blood vessels are being opened by molecular imaging

    MR elastography to assess liver fibrosis - Response

    No full text
    corecore