8 research outputs found

    Knee kinematic characterization : 3D rigid body model : characterization of parameters effects on knee kinematics

    No full text
    La cinématique de l’articulation du genou est complexe. Elle est déterminée par des paramètres géométriques et des paramètres mécaniques. Les paramètres géométriques sont principalement définis par la géométrie des os, des surfaces articulaires et par les insertions des différents tissus mous. Les paramètres mécaniques sont définis par les caractéristiques des tissus mous exprimés par les lois qui relient les distances entre leurs insertions et les efforts qu’ils génèrent. Les muscles, tendons et ligaments sont caractérisés par leur constante de raideur et leur pré-tension à une position donnée de l’articulation du genou : l’extension totale. Cette thèse analyse à l’aide d’un modèle multi-corps rigides le comportement de l’articulation du genou. La première partie de la thèse décrit la constitution du modèle. La seconde partie positionne le modèle dans des conditions aux limites. La troisième partie présente les résultats du modèle et les compare à différentes publications de la bibliographie. La quatrième et dernière partie fait varier les différents paramètres mécaniques et quantifie leur influence sur la cinématique du genou. Une synthèse des résultats permet de mettre en évidence les paramètres les plus influents sur la rotation interne/externe du tibia par rapport au fémur et sur l’avancée/recul du fémur par rapport au tibia pendant le mouvement de flexion du genou.Knee kinematic is complex. It depends of geometric parameters and mechanical parameters. Geometric parameters are mainly defined by bone geometry, articular surfaces and by several soft tissues insertions. Mechanical parameters are defined by soft tissues characteristics designed by laws which link distances between their insertions and generated forces. Muscles, tendons, and ligaments are characterized by linear stiffness and pre-load at one specific position of knee joint: full extension. This work analyzes with rigid-body simulation tool, the knee joint comportment. First part of this work describes model construction. Second part places model inside external loads and constrains. Third part shows model results and compares them to several bibliographies. Last and forth part tests several values of each mechanical parameter. This part evaluates influence of parameter to knee kinematic. Synthesis of results helps to show most influent parameters on internal/external rotation of tibia relative to femur and on femur anterior/posterior displacement during knee flexion movement

    Caractérisation de la cinématique du genou : identifier les effets de différents paramètres sur la cinématique du genou en utilisant la modélisation

    No full text
    Knee kinematic is complex. It depends of geometric parameters and mechanical parameters. Geometric parameters are mainly defined by bone geometry, articular surfaces and by several soft tissues insertions. Mechanical parameters are defined by soft tissues characteristics designed by laws which link distances between their insertions and generated forces. Muscles, tendons, and ligaments are characterized by linear stiffness and pre-load at one specific position of knee joint: full extension. This work analyzes with rigid-body simulation tool, the knee joint comportment. First part of this work describes model construction. Second part places model inside external loads and constrains. Third part shows model results and compares them to several bibliographies. Last and forth part tests several values of each mechanical parameter. This part evaluates influence of parameter to knee kinematic. Synthesis of results helps to show most influent parameters on internal/external rotation of tibia relative to femur and on femur anterior/posterior displacement during knee flexion movement.La cinématique de l’articulation du genou est complexe. Elle est déterminée par des paramètres géométriques et des paramètres mécaniques. Les paramètres géométriques sont principalement définis par la géométrie des os, des surfaces articulaires et par les insertions des différents tissus mous. Les paramètres mécaniques sont définis par les caractéristiques des tissus mous exprimés par les lois qui relient les distances entre leurs insertions et les efforts qu’ils génèrent. Les muscles, tendons et ligaments sont caractérisés par leur constante de raideur et leur pré-tension à une position donnée de l’articulation du genou : l’extension totale. Cette thèse analyse à l’aide d’un modèle multi-corps rigides le comportement de l’articulation du genou. La première partie de la thèse décrit la constitution du modèle. La seconde partie positionne le modèle dans des conditions aux limites. La troisième partie présente les résultats du modèle et les compare à différentes publications de la bibliographie. La quatrième et dernière partie fait varier les différents paramètres mécaniques et quantifie leur influence sur la cinématique du genou. Une synthèse des résultats permet de mettre en évidence les paramètres les plus influents sur la rotation interne/externe du tibia par rapport au fémur et sur l’avancée/recul du fémur par rapport au tibia pendant le mouvement de flexion du genou

    Caractérisation de la cinématique du genou : identifier les effets de différents paramètres sur la cinématique du genou en utilisant la modélisation

    No full text
    Knee kinematic is complex. It depends of geometric parameters and mechanical parameters. Geometric parameters are mainly defined by bone geometry, articular surfaces and by several soft tissues insertions. Mechanical parameters are defined by soft tissues characteristics designed by laws which link distances between their insertions and generated forces. Muscles, tendons, and ligaments are characterized by linear stiffness and pre-load at one specific position of knee joint: full extension. This work analyzes with rigid-body simulation tool, the knee joint comportment. First part of this work describes model construction. Second part places model inside external loads and constrains. Third part shows model results and compares them to several bibliographies. Last and forth part tests several values of each mechanical parameter. This part evaluates influence of parameter to knee kinematic. Synthesis of results helps to show most influent parameters on internal/external rotation of tibia relative to femur and on femur anterior/posterior displacement during knee flexion movement.La cinématique de l’articulation du genou est complexe. Elle est déterminée par des paramètres géométriques et des paramètres mécaniques. Les paramètres géométriques sont principalement définis par la géométrie des os, des surfaces articulaires et par les insertions des différents tissus mous. Les paramètres mécaniques sont définis par les caractéristiques des tissus mous exprimés par les lois qui relient les distances entre leurs insertions et les efforts qu’ils génèrent. Les muscles, tendons et ligaments sont caractérisés par leur constante de raideur et leur pré-tension à une position donnée de l’articulation du genou : l’extension totale. Cette thèse analyse à l’aide d’un modèle multi-corps rigides le comportement de l’articulation du genou. La première partie de la thèse décrit la constitution du modèle. La seconde partie positionne le modèle dans des conditions aux limites. La troisième partie présente les résultats du modèle et les compare à différentes publications de la bibliographie. La quatrième et dernière partie fait varier les différents paramètres mécaniques et quantifie leur influence sur la cinématique du genou. Une synthèse des résultats permet de mettre en évidence les paramètres les plus influents sur la rotation interne/externe du tibia par rapport au fémur et sur l’avancée/recul du fémur par rapport au tibia pendant le mouvement de flexion du genou

    Caractérisation de la cinématique du genou (identifier les effets de différents paramètres sur la cinématique du genou en utilisant la modélisation)

    No full text
    La cinématique de l articulation du genou est complexe. Elle est déterminée par des paramètres géométriques et des paramètres mécaniques. Les paramètres géométriques sont principalement définis par la géométrie des os, des surfaces articulaires et par les insertions des différents tissus mous. Les paramètres mécaniques sont définis par les caractéristiques des tissus mous exprimés par les lois qui relient les distances entre leurs insertions et les efforts qu ils génèrent. Les muscles, tendons et ligaments sont caractérisés par leur constante de raideur et leur pré-tension à une position donnée de l articulation du genou : l extension totale. Cette thèse analyse à l aide d un modèle multi-corps rigides le comportement de l articulation du genou. La première partie de la thèse décrit la constitution du modèle. La seconde partie positionne le modèle dans des conditions aux limites. La troisième partie présente les résultats du modèle et les compare à différentes publications de la bibliographie. La quatrième et dernière partie fait varier les différents paramètres mécaniques et quantifie leur influence sur la cinématique du genou. Une synthèse des résultats permet de mettre en évidence les paramètres les plus influents sur la rotation interne/externe du tibia par rapport au fémur et sur l avancée/recul du fémur par rapport au tibia pendant le mouvement de flexion du genou.Knee kinematic is complex. It depends of geometric parameters and mechanical parameters. Geometric parameters are mainly defined by bone geometry, articular surfaces and by several soft tissues insertions. Mechanical parameters are defined by soft tissues characteristics designed by laws which link distances between their insertions and generated forces. Muscles, tendons, and ligaments are characterized by linear stiffness and pre-load at one specific position of knee joint: full extension. This work analyzes with rigid-body simulation tool, the knee joint comportment. First part of this work describes model construction. Second part places model inside external loads and constrains. Third part shows model results and compares them to several bibliographies. Last and forth part tests several values of each mechanical parameter. This part evaluates influence of parameter to knee kinematic. Synthesis of results helps to show most influent parameters on internal/external rotation of tibia relative to femur and on femur anterior/posterior displacement during knee flexion movement.PARIS-CNAM (751032301) / SudocSudocFranceF

    Influence of uncemented humeral stem proximal geometry on stress distributions and torsional stability following total shoulder arthroplasty

    No full text
    Abstract Background While surgeons tend to implant larger stems to improve torsional stability, numerous studies demonstrated that increasing humeral stem diameter could exacerbate stress-shielding and lead to bone resorption. We aimed to determine the influence of humeral stem proximal geometry on stress distributions and torsional stability following total shoulder arthroplasty. Methods Preoperative computed tomography scans were acquired from 5 patients and processed to form 3-dimensional models of the proximal humerus. Computer models of 3 generic implants were created based on three designs: predominantly oval, semi-angular, and predominantly angular. All stems shared identical head geometry and differed only in the proximal metaphyseal area. Finite element analyses were performed, with the humerus rigidly constrained distally, and loaded to simulate the joint reaction force. Implant torsional stability and proximal bone stress distributions were assessed for the three different stem designs with three sizes: oversized (stem making contact with the cortical diaphysis), normosized (one increment smaller) and undersized (two increments smaller). Results Considering the normosized stems, the angular design increased the physiologic bone stresses at the proximal section by 39–42%, while the oval and semi-angular designs reduced them by 5–9% and 8–13%, respectively. The oval design exhibited a median rotation of 2.1°, while the semi-angular and angular designs exhibited median rotations of 1.8°. Conclusion The semi-angular stem granted an adequate compromise between physiologic stress distributed by the oval stem and torsional stability of the angular stem. Surgeons should be aware of the various benefits and drawbacks of the different humeral stem designs to ensure adequate torsional stability and physiologic loading

    Is global humeral head offset related to intramedullary canal width? A computer tomography morphometric study

    No full text
    Abstract Background While most anatomic TSA stems allow some intra-operative adjustments, the default configuration assumes that head offset is directly proportional to stem diameter. Some authors reported that humeral head diameter is proportional to intra-medullary canal width and humeral head offset, but none investigated the direct relationship between head offset and endosteal measurements. The purpose of the study was to determine whether global humeral head offset is proportional to intramedullary canal width at the distal metaphysis and proximal diaphysis. Methods We analyzed 100 Computed Tomography shoulder scans of patients aged 59.1 ± 20.5 with no signs of gleno-humeral arthritis nor humeral dysplasia. The width of the intramedullary diaphyseal canal was determined at four transverse sections 65, 70, 100 and 105 mm below the head center. The inter-observer agreement was excellent for intramedullary canal width (ICC = 0.96), head diameter (ICC = 0.97) and global head offset (ICC = 0.85). Correlations were analysed using Pearson’s coefficients and multivariable regressions were performed to determine associations between head offset and five independent variables (gender, age, intramedullary canal width, head diameter). Results Global head offset was negatively correlated with head diameter (r = − 0.31, p = 0.002), but not correlated with intramedullary canal width (r = − 0.11, p = 0.282). Multivariable regression confirmed that global head offset was independently associated with head diameter (beta = − 0.15, p = 0.005), but not with intramedullary canal width (beta = 0.06, p = 0.431). Conclusions The present study revealed that humeral offset is not correlated with intramedullary canal width. Implant manufacturers and shoulder surgeons should be aware of the subtle morphologic features, to enhance humeral stem design and restore native anatomy
    corecore