33 research outputs found
Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling
Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial community structure.Postprint (published version
Hydroxylamine metabolism of Ca. Kuenenia stuttgartiensis
Hydroxylamine is a key intermediate in several biological reactions of the global nitrogen cycle. However, the role of hydroxylamine in anammox is still not fully understood. In this work, the impact of hydroxylamine (also in combination with other substrates) on the metabolism of a planktonic enrichment culture of the anammox species Ca. Kuenenia stuttgartiensis was studied. Anammox bacteria were observed to produce ammonium both from hydroxylamine and hydrazine, and hydroxylamine was consumed simultaneously with nitrite. Hydrazine accumulation - signature for the presence of anammox bacteria - strongly depended on the available substrates, being higher with ammonium and lower with nitrite. Furthermore, the results presented here indicate that hydrazine accumulation is not the result of the inhibition of hydrazine dehydrogenase, as commonly assumed, but the product of hydroxylamine disproportionation. All kinetic parameters for the identified reactions were estimated by mathematical modelling. Moreover, the simultaneous consumption and growth on ammonium, nitrite and hydroxylamine of anammox bacteria was demonstrated, this was accompanied by a reduction in the nitrate production. Ultimately, this study advances the fundamental understanding of the metabolic versatility of anammox bacteria, and highlights the potential role played by metabolic intermediates (i.e. hydroxylamine, hydrazine) in shaping natural and engineered microbial communities.BT/Environmental Biotechnolog
Identification of nosZ-expressing microorganisms consuming trace N<sub>2</sub>O in microaerobic chemostat consortia dominated by an uncultured Burkholderiales
Microorganisms possessing N2O reductases (NosZ) are the only known environmental sink of N2O. While oxygen inhibition of NosZ activity is widely known, environments where N2O reduction occurs are often not devoid of O2. However, little is known regarding N2O reduction in microoxic systems. Here, 1.6-L chemostat cultures inoculated with activated sludge samples were sustained for ca. 100 days with low concentration (<2 ppmv) and feed rate (<1.44 ”moles hâ1) of N2O, and the resulting microbial consortia were analyzed via quantitative PCR (qPCR) and metagenomic/metatranscriptomic analyses. Unintended but quantified intrusion of O2 sustained dissolved oxygen concentration above 4 ”M; however, complete N2O reduction of influent N2O persisted throughout incubation. Metagenomic investigations indicated that the microbiomes were dominated by an uncultured taxon affiliated to Burkholderiales, and, along with the qPCR results, suggested coexistence of clade I and II N2O reducers. Contrastingly, metatranscriptomic nosZ pools were dominated by the Dechloromonas-like nosZ subclade, suggesting the importance of the microorganisms possessing this nosZ subclade in reduction of trace N2O. Further, co-expression of nosZ and ccoNO/cydAB genes found in the metagenome-assembled genomes representing these putative N2O-reducers implies a survival strategy to maximize utilization of scarcely available electron acceptors in microoxic environmental niches.Sanitary Engineerin
Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems
Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mLâ1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs
Adaptation of anammox bacteria to low temperature via gradual acclimation and cold shocks: Distinctions in protein expression, membrane composition and activities
Anammox bacteria enable efficient removal of nitrogen from sewage in processes involving partial nitritation and anammox (PN/A) or nitrification, partial denitrification, and anammox (N-PdN/A). In mild climates, anammox bacteria must be adapted to â€15 °C, typically by gradual temperature decrease; however, this takes months or years. To reduce the time necessary for the adaptation, an unconventional method of âcold shocksâ is promising, involving hours-long exposure of anammox biomass to extremely low temperatures. We compared the efficacies of gradual temperature decrease and cold shocks to increase the metabolic activity of anammox (fed batch reactor, planktonic âCa. Kueneniaâ). We assessed the cold shock mechanism on the level of protein expression (quantitative shot-gun proteomics, LCâHRMS/MS) and the structure of membrane lipids (UPLCâHRMS/MS). The shocked culture was more active (0.66±0.06 vs 0.48±0.06 kg-N/kg-VSS/d) and maintained the relative content of N-respiration proteins at levels consistent levels with the initial state, whereas the content of these proteins decreased in gradually acclimated culture. Cold shocks also induced a more efficient expression of potential cold shock proteins (e.g. ppiD, UspA, pqqC), while putative cold shock proteins CspB and TypA were upregulated in both cultures. Ladderane lipids characteristic for anammox evolved to a similar end-point in both cultures; this confirms their role in anammox bacteria adaptation to cold and indicates a three-pronged adaptation mechanism (ladderane alkyl length, introduction of shorter non-ladderane alkyls, polar headgroup). Overall, we show the outstanding potential of cold shocks for low-temperature adaptation of anammox bacteria and provide yet unreported detailed mechanisms of anammox adaptation to low temperatures.BT/Environmental Biotechnolog
Role of air scouring in anaerobic/anoxic tanks providing nitrogen removal by mainstream anammox conversion in a hybrid biofilm/suspended growth fullâscale WWTP in China
A fullâscale wastewater treatment plant in China experienced unintentional anammox bacterial enrichment on biofilm carriers placed in the anaerobic and anoxic zones of an anaerobic/anoxic/oxic process under ambient temperatures and without bioaugmentation. Here, we show that microaerophilic conditions resulting from air scouring needed for biofilm carrier suspension in the anaerobic/anoxic zones can support a robust nitritation/anammox process. Results from an in situ on/off air scouring test showed that air scouring strongly induced both ammonia and total inorganic nitrogen removal in the anaerobic/anoxic zones. Ammonium concentration in the anaerobic and anoxic tanks remained constant or even slightly increased when air scouring was off, indicating that air scouring made a noticeable difference in nitrogen profiles in the anaerobic/anoxic zones. Various batch tests further indicated that partial denitrification is not likely to generate nitrite for anammox bacteria. Robust nitritation, and anammox on the carriers, can occur at low dissolved oxygen conditions, as measured in the fullâscale facility. The observations show that mainstream deammonification without sidestream bioaugmentation at moderate temperature is feasible and further optimization by a more dedicated design can result in improved nitrogen removal in cases when chemical oxygen demand is limited in mainstream wastewater treatment.Practitioner pointsMicroaerophilic conditions in a fullâscale IFAS reactor caused mainstream anammox in moderate temperate area.Robust nitritation, and anammox on the carriers, can occur at low dissolved oxygen conditions in anaerobic/anoxic tanks with air scouring.Anammox can function well with conventional nitrification and denitrification process at mainstream conditions for stable nitrogen removal.Air scouring in anaerobic/anoxic tanks providing nitrogen removal by anammox conversion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/170863/1/wer1592.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/170863/2/wer1592_am.pd