6 research outputs found
Development of integrated management practices for the control of Chinese tallow (Triadica sebifera)
Chinese tallow (Triadica sebifera) tree is an aggressive, fast growing, highly adaptable invasive tree of the southeastern United States coastal region. Our study is located on Parris Island Marine Corps Recruit Depot (MCRD) in Beaufort County, South Carolina. Parris Island MCRD. Chinese tallow has been managed on Parris Island MCRD since 2001through the use of herbicides primarily with ‘hack and squirt’ methodology. In 2010, invasive species presence and abundance on Parris Island MCRD was surveyed in order to monitor the Chinese tallow population and to assess the effectiveness of previous control efforts. Results from this survey suggest there is a need for a more effective management approach because the Chinese tallow population in some areas had increased despite herbicide applications. In this study, we seek to find an effective approach for managing Chinese tallow while, at the same time, promoting native species diversity and restoring the forest ecosystem. We will test several integrated treatments including mechanical, herbicide and fire to determine their efficacy on Chinese tallow control as well as their potential adverse effects on native vegetation. The goal of the study is to determine the most effective integrated treatment of Chinese tallow
Mechanisms of Chinese tallow (Triadica sebifera) invasion and their management implications – A review
Ecosystems are under increasing stress from environmental change, including invasion by non-native species that can disrupt ecological processes and functions. Chinese tallow [Triadica sebifera (L.) Small] is a highly invasive tree species in southeastern US forests, prairies, and wetlands, and effectively managing this invasive species is a significant challenge for scientists and land managers. In this review, we synthesize the literature on invasion ecology and management of Chinese tallow. Our review suggests that the invaded range of Chinese tallow is currently limited by dispersal in many areas and by low temperatures and low soil moisture, and by high soil salinity and frequent flooding in others, but these barriers may be overcome by increased dispersal, phenotypic plasticity, and/or rapid evolution. Invasions by Chinese tallow are facilitated by both the invasiveness of the species and the invasibility of the recipient communities. Invasiveness of Chinese tallow has been attributed to fast growth, high fecundity, a persistent seed bank, aggressive resprouting, abiotic stress tolerance, and the ability to transform fire maintained ecosystems. Some of these traits may be enhanced in invasive populations. Anthropogenic and natural disturbances, lack of herbivore pressure, and facilitation by soil microbes enhance the intensity of Chinese tallow invasions. Biological control of Chinese tallow is being developed. Treatments such as herbicides, prescribed fire, and mechanical control can effectively control Chinese tallow at the local scale. A combination of these treatments improves results. However, a proactive management approach would simultaneously achieve invasion control and promote subsequent ecological restoration, especially in the context of legacy effects, secondary invasions, and/or variable ecosystem responses to different control treatments. Future research should clarify the roles of species invasiveness and community invasibility, increase our understanding of the effects of Chinese tallow in invaded communities, and develop viable management regimes that are effective in both controlling or reducing the probability of Chinese tallow invasion and restoring desired native communities
Drought Impacts and Compounding Mortality on Forest Trees in the Southern Sierra Nevada
The increase in compounding disturbances, such as “hotter droughts” coupled with insect outbreaks, has significant impacts on the integrity of forested ecosystems and their subsequent management for important ecosystem services and multiple-use objectives. In the Southern Sierra Nevada, years of severe drought have resulted in unprecedented tree mortality across this mountainous landscape. Additionally, past land management practices, including fire suppression, have led to overly stocked, homogenous forest stand structures, dominated by small diameter, shade-tolerant and fire-intolerant tree species. Thus, the current condition of the landscape has further increased the susceptibility of forest trees to multiple stressors. We sought to determine the effects of extreme drought and insect outbreaks on tree mortality and their influence on forest stand structure and composition. To characterize mortality patterns, we monitored the condition of mature forest trees (>25.4 cm diameter at breast height) across 255 monitoring plots with four repeated measurements from 2015 through 2017. Tree mortality varied by species and through time. Reductions in pine species (Pinus lambertiana Douglas and P. ponderosa Lawson & C. Lawson) occurred earlier in the study period than Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. or Calocedrus decurrens (Torr.) Florin. Across species, larger tree size, most often associated with tree height, was consistently related to increased survival in mature, overstory trees. As expected, sites with greater pine stocking and subsequently more bark beetle (Curculionidae: Scolytinae) host availability had increased pine mortality, especially for P. ponderosa. For Abies concolor, lower overstory basal area increased tree survival for this species. This study highlights the importance of effective forest monitoring, especially during a period of unprecedented ecological change as the compounding disturbance had a disproportional effect on pine species in smaller diameter classes. Proactive forest management may be necessary to maintain and promote these ecologically important species in heterogeneous mixtures across the landscape