51 research outputs found

    A Combination of Thematic and Similarity-Based Semantic Processes Confers Resistance to Deficit Following Left Hemisphere Stroke

    Get PDF
    Semantic knowledge may be organized in terms of similarity relations based on shared features and/or complementary relations based on co-occurrence in events. Thus, relationships between manipulable objects such as tools may be defined by their functional properties (what the objects are used for) or thematic properties (e.g., what the objects are used with or on). A recent study from our laboratory used eye-tracking to examine incidental activation of semantic relations in a word–picture matching task and found relatively early activation of thematic relations (e.g., broom–dustpan), later activation of general functional relations (e.g., broom–sponge), and an intermediate pattern for specific functional relations (e.g., broom–vacuum cleaner). Combined with other recent studies, these results suggest that there are distinct semantic systems for thematic and similarity-based knowledge and that the “specific function” condition drew on both systems. This predicts that left hemisphere stroke that damages either system (but not both) may spare specific function processing. The present experiment tested these hypotheses using the same experimental paradigm with participants with left hemisphere lesions (N = 17). The results revealed that, compared to neurologically intact controls (N = 12), stroke participants showed later activation of thematic and general function relations, but activation of specific function relations was spared and was significantly earlier for stroke participants than controls. Across the stroke participants, activation of thematic and general function relations was negatively correlated, further suggesting that damage tended to affect either one semantic system or the other. These results support the distinction between similarity-based and complementarity-based semantic relations and suggest that relations that draw on both systems are relatively more robust to damage

    Spatially Distributed Tactile Feedback for Kinesthetic Motion Guidance

    Get PDF
    Apraxic stroke patients need to perform repetitive arm movements to regain motor functionality, but they struggle to process the visual feedback provided by typical virtual rehabilitation systems. Instead, we imagine a low cost sleeve that can measure the movement of the upper limb and provide tactile feedback at key locations. The feedback provided by the tactors should guide the patient through a series of desired movements by allowing him or her to feel limb configuration errors at each instant in time. After discussing the relevant motion capture and actuator options, this paper describes the design and programming of our current prototype, a wearable tactile interface that uses magnetic motion tracking and shaftless eccentric mass motors. The sensors and actuators are attached to the sleeve of an athletic shirt with novel plastic caps, which also help focus the vibration on the user\u27s skin. We connect the motors in current drive for improved performance, and we present a full parametric model for their in situ dynamic response (acceleration output given current input)

    The role of action representations in thematic object relations

    Get PDF
    A number of studies have explored the role of associative/event-based (thematic) and categorical (taxonomic) relations in the organization of object representations. Recent evidence suggests that thematic information may be particularly important in determining relationships between manipulable artifacts. However, although sensorimotor information is on many accounts an important component of manipulable artifact representations, little is known about the role that action may play during the processing of semantic relationships (particularly thematic relationships) between multiple objects. In this study, we assessed healthy and left hemisphere stroke participants to explore three questions relevant to object relationship processing. First, we assessed whether participants tended to favor thematic relations including action (Th+A, e.g., wine bottle—corkscrew), thematic relationships without action (Th-A, e.g., wine bottle—cheese), or taxonomic relationships (Tax, e.g., wine bottle—water bottle) when choosing between them in an association judgment task with manipulable artifacts. Second, we assessed whether the underlying constructs of event relatedness, action relatedness, and categorical relatedness determined the choices that participants made. Third, we assessed the hypothesis that degraded action knowledge and/or damage to temporo-parietal cortex, a region of the brain associated with the representation of action knowledge, would reduce the influence of action on the choice task. Experiment 1 showed that explicit ratings of event, action, and categorical relatedness were differentially predictive of healthy participants' choices, with action relatedness determining choices between Th+A and Th-A associations above and beyond event and categorical ratings. Experiment 2 focused more specifically on these Th+A vs. Th-A choices and demonstrated that participants with left temporo-parietal lesions, a brain region known to be involved in sensorimotor processing, were less likely than controls and tended to be less likely than patients with lesions sparing that region to use action relatedness in determining their choices. These data indicate that action knowledge plays a critical role in processing of thematic relations for manipulable artifacts

    Benefit of visual speech information for word comprehension in post-stroke aphasia

    Get PDF
    Aphasia is a language disorder that often involves speech comprehension impairments affecting communication. In face-to-face settings, speech is accompanied by mouth and facial movements, but little is known about the extent to which they benefit aphasic comprehension. This study investigated the benefit of visual information accompanying speech for word comprehension in people with aphasia (PWA) and the neuroanatomic substrates of any benefit. Thirty-six PWA and 13 neurotypical matched control participants performed a picture-word verification task in which they indicated whether a picture of an animate/inanimate object matched a subsequent word produced by an actress in a video. Stimuli were either audiovisual (with visible mouth and facial movements) or auditory-only (still picture of a silhouette) with audio being clear (unedited) or degraded (6-band noise-vocoding). We found that visual speech information was more beneficial for neurotypical participants than PWA, and more beneficial for both groups when speech was degraded. A multivariate lesion-symptom mapping analysis for the degraded speech condition showed that lesions to superior temporal gyrus, underlying insula, primary and secondary somatosensory cortices, and inferior frontal gyrus were associated with reduced benefit of audiovisual compared to auditory-only speech, suggesting that the integrity of these fronto-temporo-parietal regions may facilitate cross-modal mapping. These findings provide initial insights into our understanding of the impact of audiovisual information on comprehension in aphasia and the brain regions mediating any benefit

    Lessons in Using Vibrotactile Feedback to Guide Fast Arm Motions

    Get PDF
    We present and evaluate an arm-motion guidance system that uses magnetic tracking sensors and low cost vibrotactile actuators. The system measures the movement of the user’s arm and provides vibration feedback at the wrist and elbow when they stray from the desired motion. An initial study was conducted to investigate whether adding tactile feedback to visual feedback reduces motion errors when a user is learning a new arm trajectory. Although subjects preferred it, we found that the addition of tactile feedback did not affect motion tracking performance. We also found no strong preference or performance differences between attractive and repulsive tactile feedback. Some factors that may have influenced these results include the speed and the complexity of the tested motions, the type of tactile actuators and drive signals used, and inconsistencies in joint angle estimation due to Euler angle gimbal lock. We discuss insights from this analysis and provide suggestions for future systems and studies in tactile motion guidance

    Benefit of Visual Speech Information for Word Comprehension in Post-stroke Aphasia

    Get PDF
    Aphasia is a language disorder that often involves speech comprehension impairments affecting communication. In face-to-face settings, speech is accompanied by mouth and facial movements, but little is known about the extent to which they benefit aphasic comprehension. This study investigated the benefit of visual information accompanying speech for word comprehension in people with aphasia (PWA) and the neuroanatomic substrates of any benefit. Thirty-six PWA and 13 neurotypical matched control participants performed a picture-word verification task in which they indicated whether a picture of an animate/inanimate object matched a subsequent word produced by an actress in a video. Stimuli were either audiovisual (with visible mouth and facial movements) or auditory-only (still picture of a silhouette) with audio being clear (unedited) or degraded (6-band noise-vocoding). We found that visual speech information was more beneficial for neurotypical participants than PWA, and more beneficial for both groups when speech was degraded. A multivariate lesion-symptom mapping analysis for the degraded speech condition showed that lesions to superior temporal gyrus, underlying insula, primary and secondary somatosensory cortices, and inferior frontal gyrus were associated with reduced benefit of audiovisual compared to auditory-only speech, suggesting that the integrity of these fronto-temporo-parietal regions may facilitate cross-modal mapping. These findings provide initial insights into our understanding of the impact of audiovisual information on comprehension in aphasia and the brain regions mediating any benefit

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5â€Č deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    Complex object-related actions: Structure, meaning, and context

    No full text
    • 

    corecore