2 research outputs found

    Radiation Combined With Thermal Injury Induces Immature Myeloid Cells

    Get PDF
    The continued development of nuclear weapons and the potential for thermonuclear injury necessitates the further understanding of the immune consequences after radiation combined with injury (RCI). We hypothesized that sub-lethal ionization radiation exposure combined with a full thickness thermal injury would result in the production of immature myeloid cells. Mice underwent either a 20% total body surface area (TBSA) full-thickness contact burn or sham procedure followed by a single whole body dose of 5-Gy radiation. Serum, spleen and peripheral lymph nodes were harvested at 3 and 14 days post-injury. Flow cytometry was performed to identify and characterize adaptive and innate cell compartments. Elevated pro- and anti-inflammatory serum cytokines and profound leukopenia were observed after RCI. A population of cells with dual expression of the cell surface markers Gr-1 and CD11b were identified in all experimental groups, but was significantly elevated after burn alone and RCI at 14 days post-injury. In contrast to the T-cell suppressive nature of myeloid-derived suppressor cells (MDSC) found after trauma and sepsis, myeloid cells after RCI augmented T-cell proliferation and were associated with a weak but significant increase in IFN-γ and a decrease in IL-10. This is consistent with previous work in burn injury indicating that a MDSC-like population increases innate immunity. RCI results in the increase of distinct populations of Gr-1+ CD11b+cells within the secondary lymphoid organs, and we propose these immature inflammatory myeloid cells provide innate immunity to the severely injured and immunocompromised host

    Radiation Combined With Thermal Injury Induces Immature Myeloid Cells

    No full text
    The continued development of nuclear weapons and the potential for thermonuclear injury necessitates the further understanding of the immune consequences after radiation combined with injury (RCI). We hypothesized that sub-lethal ionization radiation exposure combined with a full thickness thermal injury would result in the production of immature myeloid cells. Mice underwent either a 20% total body surface area (TBSA) full-thickness contact burn or sham procedure followed by a single whole body dose of 5-Gy radiation. Serum, spleen and peripheral lymph nodes were harvested at 3 and 14 days post-injury. Flow cytometry was performed to identify and characterize adaptive and innate cell compartments. Elevated pro- and anti-inflammatory serum cytokines and profound leukopenia were observed after RCI. A population of cells with dual expression of the cell surface markers Gr-1 and CD11b were identified in all experimental groups, but was significantly elevated after burn alone and RCI at 14 days post-injury. In contrast to the T-cell suppressive nature of myeloid-derived suppressor cells (MDSC) found after trauma and sepsis, myeloid cells after RCI augmented T-cell proliferation and were associated with a weak but significant increase in IFN-γ and a decrease in IL-10. This is consistent with previous work in burn injury indicating that a MDSC-like population increases innate immunity. RCI results in the increase of distinct populations of Gr-1(+) CD11b(+)cells within the secondary lymphoid organs, and we propose these immature inflammatory myeloid cells provide innate immunity to the severely injured and immunocompromised host
    corecore