45 research outputs found
A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep
BACKGROUND: Peptidergic neurons containing the melanin-concentrating hormone (MCH) and the hypocretins (or orexins) are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep) during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV) administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. RESULTS: Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats). Further, we show that ICV administration of MCH induces a dose-dependant increase in PS (up to 200%) and slow wave sleep (up to 70%) quantities. CONCLUSION: These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system
Amyloidogenesis, Neurogenesis, Learning, and Memory in Alzheimer’s Disease: Lessons from Transgenic Mouse Models
International audienc
Localization of the neurons responsible for the inhibition of locus coeruleus noradrenergic neurons during paradoxical sleep in the rat
International audienc
Hippocampal neurogenesis during normal and pathological aging.
It is now widely accepted that new neurons continue to be added to the brain throughout life including during normal aging. The finding of adult neurogenesis in the hippocampus, a structure involved in the processing of memories, has favored the idea that newborn neurons might subserve cognitive functions. Recent work on human post-mortem tissues and mice models of Alzheimer's disease (AD) has reported persistent hippocampal proliferative capacity during pathological aging. Although it is not yet clear whether neurogenesis leads to the production of fully functional mature neurons in AD brains, these findings open prospects for cell-replacement therapies. Strategies aimed at promoting neurogenesis may also contribute to improve cognitive deficits caused by normal or pathological aging
Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery
International audienc
Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat.
International audienceLocus coeruleus (LC) noradrenergic neurons are active during wakefulness, slow their discharge rate during slow wave sleep, and stop firing during paradoxical sleep (PS). A large body of data indicates that their inactivation during PS is due to a tonic GABAergic inhibition. To localize the neurons responsible for such inhibition, we first examined the distribution of retrogradely and Fos double-immunostained neurons following cholera toxin b subunit (CTb) injection in the LC of control rats, rats selectively deprived of PS for 3 days, and rats allowed to recover for 3 hours from such deprivation. We found a significant number of CTb/Fos double-labeled cells only in the recovery group. The largest number of CTb/Fos double-labeled cells was found in the dorsal paragigantocellular reticular nucleus (DPGi). It indeed contained 19% of the CTb/Fos double-labeled neurons, whereas the ventrolateral periaqueductal gray (vlPAG) contained 18.3% of these neurons, the lateral paragigantocellular reticular nucleus (LPGi) 15%, the lateral hypothalamic area 9%, the lateral PAG 6.7%, and the rostral PAG 6%. In addition, CTb/Fos double-labeled cells constituted 43% of all the singly CTb-labeled cells counted in the DPGi compared with 29% for the LPGi, 18% for the rostral PAG, and 10% or less for the other structures. Although all these populations of CTb/Fos double-labeled neurons could be GABAergic and tonically inhibit LC neurons during PS, our results indicate that neurons from the DPGi constitute the best candidate for this role
Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat.
Locus coeruleus (LC) noradrenergic neurons are active during wakefulness, slow their discharge rate during slow wave sleep, and stop firing during paradoxical sleep (PS). A large body of data indicates that their inactivation during PS is due to a tonic GABAergic inhibition. To localize the neurons responsible for such inhibition, we first examined the distribution of retrogradely and Fos double-immunostained neurons following cholera toxin b subunit (CTb) injection in the LC of control rats, rats selectively deprived of PS for 3 days, and rats allowed to recover for 3 hours from such deprivation. We found a significant number of CTb/Fos double-labeled cells only in the recovery group. The largest number of CTb/Fos double-labeled cells was found in the dorsal paragigantocellular reticular nucleus (DPGi). It indeed contained 19% of the CTb/Fos double-labeled neurons, whereas the ventrolateral periaqueductal gray (vlPAG) contained 18.3% of these neurons, the lateral paragigantocellular reticular nucleus (LPGi) 15%, the lateral hypothalamic area 9%, the lateral PAG 6.7%, and the rostral PAG 6%. In addition, CTb/Fos double-labeled cells constituted 43% of all the singly CTb-labeled cells counted in the DPGi compared with 29% for the LPGi, 18% for the rostral PAG, and 10% or less for the other structures. Although all these populations of CTb/Fos double-labeled neurons could be GABAergic and tonically inhibit LC neurons during PS, our results indicate that neurons from the DPGi constitute the best candidate for this role
Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat.
Locus coeruleus (LC) noradrenergic neurons are active during wakefulness, slow their discharge rate during slow wave sleep, and stop firing during paradoxical sleep (PS). A large body of data indicates that their inactivation during PS is due to a tonic GABAergic inhibition. To localize the neurons responsible for such inhibition, we first examined the distribution of retrogradely and Fos double-immunostained neurons following cholera toxin b subunit (CTb) injection in the LC of control rats, rats selectively deprived of PS for 3 days, and rats allowed to recover for 3 hours from such deprivation. We found a significant number of CTb/Fos double-labeled cells only in the recovery group. The largest number of CTb/Fos double-labeled cells was found in the dorsal paragigantocellular reticular nucleus (DPGi). It indeed contained 19% of the CTb/Fos double-labeled neurons, whereas the ventrolateral periaqueductal gray (vlPAG) contained 18.3% of these neurons, the lateral paragigantocellular reticular nucleus (LPGi) 15%, the lateral hypothalamic area 9%, the lateral PAG 6.7%, and the rostral PAG 6%. In addition, CTb/Fos double-labeled cells constituted 43% of all the singly CTb-labeled cells counted in the DPGi compared with 29% for the LPGi, 18% for the rostral PAG, and 10% or less for the other structures. Although all these populations of CTb/Fos double-labeled neurons could be GABAergic and tonically inhibit LC neurons during PS, our results indicate that neurons from the DPGi constitute the best candidate for this role
Effects of the genetic background on cognitive performances of TG2576 mice.
Animal models of genetic diseases obtained by transferring human mutated genes in the mouse are widely used in biomedical based research. They constitute efficient tools to study mechanisms underlying abnormal phenotypes. Unfortunately, the phenotype of the transgene is often obscured by the genetic background of the embryonic stem cells and that of the recipient strain used to create the transgenic line. It is also known, from the literature, that repeatedly backcrossing a transgenic strain to an inbred background may have unfavorable effects that can result in the loss of the transgenic line. In order to analyze the influences of the genetic background on the transgene expression, we studied the effects of the hAPPswe transgene involved in Alzheimer's Amyloid Pathology, in 3 genetic backgrounds differing by their genetic heterogeneity (homozygous vs heterozygous) and the strain of origin (C57BL6, CBA, B6SJL F1) after only one generation backcrossing. Three different behavioral paradigms were used to assess the psychological and cognitive phenotypic differences: elevated plus maze, morris navigation task and contextual fear conditioning. Our data indicate that the best solution to maintain the transgenic line is to backcross repeatedly the transgenic mice into the F1 hybrid cross that was used to create the transgenic strain, whereas phenotyping should be performed comparatively after only one generation backcrossing into various well chosen F1 or inbred backgrounds