47 research outputs found
Recommended from our members
An Atypical Kinase under Balancing Selection Confers Broad-Spectrum Disease Resistance in Arabidopsis
The failure of gene-for-gene resistance traits to provide durable and broad-spectrum resistance in an agricultural context has led to the search for genes underlying quantitative resistance in plants. Such genes have been identified in only a few cases, all for fungal or nematode resistance, and encode diverse molecular functions. However, an understanding of the molecular mechanisms of quantitative resistance variation to other enemies and the associated evolutionary forces shaping this variation remain largely unknown. We report the identification, map-based cloning and functional validation of QRX3 (RKS1, Resistance related KinaSe 1), conferring broad-spectrum resistance to Xanthomonas campestris (Xc), a devastating worldwide bacterial vascular pathogen of crucifers. RKS1 encodes an atypical kinase that mediates a quantitative resistance mechanism in plants by restricting bacterial spread from the infection site. Nested Genome-Wide Association mapping revealed a major locus corresponding to an allelic series at RKS1 at the species level. An association between variation in resistance and RKS1 transcription was found using various transgenic lines as well as in natural accessions, suggesting that regulation of RKS1 expression is a major component of quantitative resistance to Xc. The co-existence of long lived RKS1 haplotypes in A. thaliana is shared with a variety of genes involved in pathogen recognition, suggesting common selective pressures. The identification of RKS1 constitutes a starting point for deciphering the mechanisms underlying broad spectrum quantitative disease resistance that is effective against a devastating and vascular crop pathogen. Because putative RKS1 orthologous have been found in other Brassica species, RKS1 provides an exciting opportunity for plant breeders to improve resistance to black rot in crops.</p
Phenotypic and transcriptomic analyses reveal major differences between apple and pear scab nonhost resistance
Nonhost resistance is the outcome of most plant/pathogen interactions, but it has rarely been described in Rosaceous fruit species. Apple (Malus x domestica Borkh.) have a nonhost resistance to Venturia pyrina, the scab species attacking European pear (Pyrus communis L.). Reciprocally, P. communis have a nonhost resistance to Venturia inaequalis, the scab species attacking apple. The major objective of our study was to compare the scab nonhost resistance in apple and in European pear, at the phenotypic and transcriptomic levels. Macro- and microscopic observations after reciprocal scab inoculations indicated that, after a similar germination step, nonhost apple/V. pyrina interaction remained nearly symptomless, whereas more hypersensitive reactions were observed during nonhost pear/V. inaequalis interaction. Comparative transcriptomic analyses of apple and pear nonhost interactions with V. pyrina and V. inaequalis, respectively, revealed differences. Very few differentially expressed genes were detected during apple/V. pyrina interaction, preventing the inferring of underlying molecular mechanisms. On the contrary, numerous genes were differentially expressed during pear/V. inaequalis interaction, allowing a deep deciphering. Pre-invasive defense, such as stomatal closure, could be inferred, as well as several post-invasive defense mechanisms (apoplastic reactive oxygen species accumulation, phytoalexin production and alterations of the epidermis composition). In addition, a comparative analysis between pear scab host and nonhost interactions indicated that, although specificities were observed, two major defense lines seems to be shared in these resistances: cell wall and cuticle potential modifications and phenylpropanoid pathway induction. This first deciphering of the molecular mechanisms underlying a nonhost scab resistance in pear offers new possibilities for the genetic engineering of sustainable scab resistance in this species. Concerning nonhost scab resistance in apple, further analyses must be considered with the aid of tools adapted to this resistance with very few cells engaged
Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana
BACKGROUND: Low-level, partial resistance is pre-eminent in natural populations, however, the mechanisms underlying this form of resistance are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used the model pathosystem Pseudomonas syringae pv. tomato DC3000 (Pst) - Arabidopsis thaliana to study the genetic basis of this form of resistance. Phenotypic analysis of a set of Arabidopsis accessions, based on evaluation of in planta pathogen growth revealed extensive quantitative variation for partial resistance to Pst. It allowed choosing a recombinant inbred line (RIL) population derived from a cross between the accessions Bayreuth and Shahdara for quantitative genetic analysis. Experiments performed under two different environmental conditions led to the detection of two major and two minor quantitative trait loci (QTLs) governing partial resistance to Pst and called PRP-Ps1 to PRP-Ps4. The two major QTLs, PRP-Ps1 and PRP-Ps2, were confirmed in near isogenic lines (NILs), following the heterogeneous inbred families (HIFs) strategy. Analysis of marker gene expression using these HIFs indicated a negative correlation between the induced amount of transcripts of SA-dependent genes PR1, ICS and PR5, and the in planta bacterial growth in the HIF segregating at PRP-Ps2 locus, suggesting an implication of PRP-Ps2 in the activation of SA dependent responses. CONCLUSIONS/SIGNIFICANCE: These results show that variation in partial resistance to Pst in Arabidopsis is governed by relatively few loci, and the validation of two major loci opens the way for their fine mapping and their cloning, which will improve our understanding of the molecular mechanisms underlying partial resistance
Cartographie génétique des résistances partielles du melon à la fusariose race 1.2 et au mildiou
* INRA Documentation, Domaine St Paul, Site Agroparc, 84914 Avignon cedex 9 * Dir. de thèse: Michel Pitrat Diffusion du document : INRA Documentation, Domaine St Paul, Site Agroparc, 84914 Avignon cedex 9 Diplôme : Dr. Ing
Polygenic inheritance of partial resistance to Fusarium oxysporum f.sp. melonis race 1.2 in melon
International audienc
Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon
International audienc
Hérédité de la résistance à l'oïdium et au mildiou dans une lignée de melon
poster * INRA, Documentation, Domaine St Paul, Site Agroparc, 84914 Avignon cedex 9 Diffusion du document : INRA, Documentation, Domaine St Paul, Site Agroparc, 84914 Avignon cedex 9National audienc
Identification of molecular markers linked to Fusarium oxysporum fsp melonis race 1.2 in melon.
PosterInternational audienc
Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping
Partial resistance to downy mildew (Pseudoperonospora cubensis) and complete resistance to powdery mildew (Podosphaera xanthii races 1, 2, 3, and 5 and Golovinomyces cichoracearum race 1) were studied using a recombinant inbred line population between ‘PI 124112’ (resistant to both diseases) and ‘Védrantais’ (susceptible line). A genetic map of melon was constructed to tag these resistances with DNA markers. Natural and artificial inoculations of Pseudoperonospora cubensis were performed and replicated in several locations. One major quantitative trait loci (QTL), pcXII.1, was consistently detected among the locations and explained between 12 to 38% of the phenotypic variation for Pseudoperonospora cubensis resistance. Eight other Pseudoperonospora cubensis resistance QTL were identified. Artificial inoculations were performed with several strains of four races of Podosphaera xanthii and one race of G. cichoracearum. Two independent major genes, PmV.1 and PmXII.1, were identified and shown to be involved in the simple resistance to powdery mildew. Three digenic epistatic interactions involving four loci were detected for two races of Podosphaera xanthii and one race of G. cichoracearum. Co-localization between PmV.1, resistance genes, and resistance genes homologues was observed. Linkage between the major resistance QTL to Pseudoperonospora cubensis, pcXII.1, and one of the two resistance genes to powdery mildew, PmXII.1, was demonstrated