186 research outputs found
Reversible Quantum Interface for Tunable Single-sideband Modulation
Using Electromagnetically Induced Transparency (EIT) in a Cesium vapor, we
demonstrate experimentally that the quantum state of a light beam can be mapped
into the long lived Zeeman coherences of an atomic ground state. Two
non-commuting variables carried by light are simultaneously stored and
subsequentely read-out, with no noise added. We compare the case where a
tunable single sideband is stored independently of the other one to the case
where the two symmetrical sidebands are stored using the same EIT transparency
window.Comment: 4 pages, 6 figure
Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light
Transferring quantum information between distant nodes of a network is a key
capability. This transfer can be realized via remote state preparation where
two parties share entanglement and the sender has full knowledge of the state
to be communicated. Here we demonstrate such a process between heterogeneous
nodes functioning with different information encodings, i.e., particle-like
discrete-variable optical qubits and wave-like continuous-variable ones. Using
hybrid entanglement of light as a shared resource, we prepare arbitrary
coherent-state superpositions controlled by measurements on the distant
discrete-encoded node. The remotely prepared states are fully characterized by
quantum state tomography and negative Wigner functions are obtained. This work
demonstrates a novel capability to bridge discrete- and continuous-variable
platforms
Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling
Heralded entanglement between collective excitations in two atomic ensembles
is probabilistically generated, stored, and converted to single photon fields.
By way of the concurrence, quantitative characterizations are reported for the
scaling behavior of entanglement with excitation probability and for the
temporal dynamics of various correlations resulting in the decay of
entanglement. A lower bound of the concurrence for the collective atomic state
of 0.9\pm 0.3 is inferred. The decay of entanglement as a function of storage
time is also observed, and related to the local dynamics.Comment: 4 page
Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory
The full structuration of light in the transverse plane, including intensity,
phase and polarization, holds the promise of unprecedented capabilities for
applications in classical optics as well as in quantum optics and information
sciences. Harnessing special topologies can lead to enhanced focusing, data
multiplexing or advanced sensing and metrology. Here we experimentally
demonstrate the storage of such spatio-polarization-patterned beams into an
optical memory. A set of vectorial vortex modes is generated via liquid crystal
cell with topological charge in the optic axis distribution, and preservation
of the phase and polarization singularities is demonstrated after retrieval, at
the single-photon level. The realized multiple-degree-of-freedom memory can
find applications in classical data processing but also in quantum network
scenarios where structured states have been shown to provide promising
attributes, such as rotational invariance
Entanglement storage in atomic ensembles
We propose to entangle macroscopic atomic ensembles in cavity using
EPR-correlated beams. We show how the field entanglement can be almost
perfectly mapped onto the long-lived atomic spins associated with the ground
states of the ensembles, and how it can be retrieved in the fields exiting the
cavities after a variable storage time. Such a continuous variable quantum
memory is of interest for manipulating entanglement in quantum networks
- …