78 research outputs found

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    An abstract Lagrangian framework for computing shape derivatives

    No full text
    In this paper we study an abstract framework for computing shape derivatives of functionals subject to PDE constraints in Banach spaces. We revisit the Lagrangian approach using the implicit function theorem in an abstract setting tailored for applications to shape optimization. This abstract framework yields practical formulae to compute the derivative of a shape functional, the material derivative of the state, and the adjoint state. Furthermore, it allows to gain insight on the duality between the material derivative of the state and the adjoint state. We show several applications of this method to the computation of distributed shape derivatives for problems involving linear elliptic, nonlinear elliptic, parabolic PDEs and distributions. We also compare our approach with other techniques for computing shape derivatives including the material derivative method and the averaged adjoint method
    corecore