2 research outputs found

    Alpha-1 antitrypsin deficiency and tobacco smoking: exploring risk factors and smoking cessation in a registry population.

    No full text
    The ZZ genotype of alpha-1 antitrypsin deficiency (AATD) is strongly associated with COPD, even in never-smokers. Moderate AATD genotypes (MZ and SZ) have been shown to increase the severity of COPD in smokers. In this comparative study, we examine the association between AATD, genotypes, and smoking cessation. Two hundred and ninety-three Irish people with AATD [MZ (n = 91), SZ (n = 72), and ZZ/rare (n = 130)] completed a custom questionnaire assessing their social and smoking histories. The primary outcomes analyzed were the predictors of ever-smoking and effect of genotype on awareness of AATD and maintained smoking cessation, using logistic regression analyses. Parental smoking exposure was associated with ever-smoking status (OR 1.84 vs. no parental smoking, p = 0.018), higher cumulative tobacco consumption (23.47 vs. 14.87 pack-years, p = 0.005) and more quit attempts required to achieve cessation among former-smokers (2.97 vs. 5.60, p = 0.007). Awareness of genotype was 67.7% versus 56.3% versus 33% for ZZ, SZ, and MZ, respectively (p p = 0.009) with ZZs significantly less likely to be current-smokers (OR 0.15 relative to MZ, p = 0.025). These results suggest that the genetic risk of COPD in AATD families is compounded by transmission of social risk factors (via parental smoking). Increasing severity of genotype is associated with lower current-smoking rates among ever-smokers. Whether this is attributable to greater awareness of risk is an area of interest. Achieving a change in smoking habits may also result in positive health behavior in subsequent generations

    C3d elicits neutrophil degranulation and decreases endothelial cell migration, with implications for patients with alpha-1 antitrypsin deficiency

    No full text
    Alpha-1 antitrypsin (AAT) deficiency (AATD) is characterized by increased risk for emphysema, chronic obstructive pulmonary disease (COPD), vasculitis, and wound-healing impairment. Neutrophils play a central role in the pathogenesis of AATD. Dysregulated complement activation in AATD results in increased plasma levels of C3d. The current study investigated the impact of C3d on circulating neutrophils. Blood was collected from AATD (n = 88) or non-AATD COPD patients (n = 10) and healthy controls (HC) (n = 40). Neutrophils were challenged with C3d, and degranulation was assessed by Western blotting, ELISA, or fluorescence resonance energy transfer (FRET) substrate assays. Ex vivo, C3d levels were increased in plasma (p p = 0.038) in AATD compared to HC. C3d binding to CR3 receptors triggered primary (p = 0.01), secondary (p = 0.004), and tertiary (p = 0.018) granule release and increased CXCL8 secretion (p = 0.02). Ex vivo plasma levels of bactericidal-permeability-increasing-protein (p = 0.02), myeloperoxidase (p p p p < 0.0001). In summary, AATD patients had increased C3d in plasma and on neutrophil membranes and, together with neutrophil-released granule enzymes, reduced endothelial cell migration and wound healing, with potential implications for AATD-related vasculitis. </p
    corecore