7 research outputs found

    Simulated effects of ground-water management scenarios on the Santa Fe group aquifer system, Middle Rio Grande Basin, New Mexico, 2001-40

    No full text
    Future conditions in the Santa Fe Group aquifer system through 2040 were simulated using the most recent revision of the U.S. Geological Survey groundwater- flow model for the Middle Rio Grande Basin. Three simulations were performed to investigate the likely effects of different scenarios of future groundwater pumping by the City of Albuquerque on the ground-water system. For simulation I, pumping was held constant at known year-2000 rates. For simulation II, pumping was increased to simulate the use of pumping to meet all projected city water demand through 2040. For simulation III, pumpingwas reduced in accordance with a plan by the City of Albuquerque to use surfacewater to meet most of the projectedwater demand. The simulations indicate that for each of the three pumping scenarios, substantial additional watertable declines would occur in some areas of the basin through 2040. However, the reduced pumping scenario of simulation III also results in water-table rise over a broad area of the city. All three scenarios indicate that the contributions of aquifer storage and river leakage to the ground-water system would change between 2000 and 2040. Comparisons among the results for simulations I, II, and III indicate that the various pumping scenarios have substantially different effects on water-level declines in the Albuquerque area and on the contribution of each water-budget component to the total budget for the ground-water system. Between 2000 and 2040, water-level declines for continued pumping at year 2000 rates are as much as 120 feet greater than for reduced pumping water level declines for increased pumping to meet all projected city demand are as much as 160 feet greater. Over the same time period, reduced pumping results in retention in aquifer storage of about 1,536,000 acre feet of ground water as compared with continued pumping at year 2000 rates and of about 2,257,000 acre feet as compared with increased pumping. The quantity of water retained in the Rio Grande as a result of reduced pumping and the associated decrease in induced recharge from the river is about 731,000 acre feet as compared with continued pumping at year 2000 rates and about 872,000 acre feet as compared with increased pumping. Reduced pumping results in slight increases in the quantity of water lost from the groundwater system to evapotranspiration and agriculturaldrain flow compared with the other pumping scenarios

    HYDROLOGIC AND ECOLOGIC INFLUENCE OF PLAYA BASINS IN THE SOUTHERN HIGH PLAINS, TEXAS AND NEW MEXICO

    No full text
    FOREWORD The mission of the U.S. Geological Survey (USGS) is to assess the quantity and quality of the earth resources of the Nation and to provide information that will assist resource managers and policymakers at Federal, State, and local levels in making sound decisions. Assessment of water-quality conditions and trends is an important part of this overall mission. One of the greatest challenges faced by waterresources scientists is acquiring reliable information that will guide the use and protection of the Nation's water resources. That challenge is being addressed by Federal, State, interstate, and local water-resource agencies and by many academic institutions. These organizations are collecting water-quality data for a host of purposes that include: compliance with permits and water-supply standards; development of remediation plans for a specific contamination problem; operational decisions on industrial, wastewater, or watersupply facilities; and research on factors that affect water quality. An additional need for water-quality information is to provide a basis on which regional and national-level policy decisions can be based. Wise decisions must be based on sound information. As a society we need to know whether certain types of water-quality problems are isolated or ubiquitous, whether there are significant differences in conditions among regions, whether the conditions are changing over time, and why these conditions change from place to place and over time. The information can be used to help determine the efficacy of existing waterquality policies and to help analysts determine the need for and likely consequences of new policies. To address these needs, the Congress appropriated funds in 1986 for the USGS to begin a pilot program in seven project areas to develop and refine the National Water-Quality Assessment (NAWQA) Program. In 1991, the USGS began full implementation of the program. The NAWQA Program builds upon an existing base of water-quality studies of the USGS, as well as those of other Federal, State, and local agencies. The objectives of the NAWQA Program are to: Describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers. Describe how water quality is changing over time. Improve understanding of the primary natural and human factors that affect water-quality conditions. This information will help support the development and evaluation of management, regulatory, and monitoring decisions by other Federal, State, and local agencies to protect, use, and enhance water resources. The goals of the NAWQA Program are being achieved through ongoing and proposed investigations of 60 of the Nation's most important river basins and aquifer systems, which are referred to as study units. These study units are distributed throughout the Nation and cover a diversity of hydrogeologic settings. More than two-thirds of the Nation's freshwater use occurs within the 60 study units and more than two-thirds of the people served by public water-supply systems live within their boundaries. National synthesis of data analysis, based on aggregation of comparable information obtained from the study units, is a major component of the program. This effort focuses on selected water-quality topics using nationally consistent information. Comparative studies will explain differences and similarities in observed water-quality conditions among study areas and will identify changes and trends and their causes. The first topics addressed by the national synthesis are pesticides, nutrients, volatile organic compounds, and aquatic biology. Discussions on these and other waterquality topics will be published in periodic summaries of the quality of the Nation's ground and surface water as the information becomes available. This report is an element of the comprehensive body of information developed as part of the NAWQA Program. The program depends heavily on the advice, cooperation, and information from many Federal, State, interstate, Tribal, and local agencies and the public. The assistance and suggestions of all are greatly appreciated

    Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system /

    No full text
    Includes bibliographical references (p. 100-101).Mode of access: Internet

    Simulated effects of ground-water management scenarios on the Santa Fe group aquifer system, Middle Rio Grande Basin, New Mexico, 2001-40 /

    No full text
    Shipping list no.: 2003-0219-P.Includes bibliographical references (p. 38-39).Mode of access: Internet

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development

    No full text
    corecore