2 research outputs found

    Is Ocean Reflectance Acquired by Citizen Scientists Robust for Science Applications?

    No full text
    Monitoring the dynamics of the productivity of ocean water and how it affects fisheries is essential for management. It requires data on proper spatial and temporal scales, which can be provided by operational ocean colour satellites. However, accurate productivity data from ocean colour imagery is only possible with proper validation of, for instance, the atmospheric correction applied to the images. In situ water reflectance data are of great value due to the requirements for validation and reflectance is traditionally measured with the Surface Acquisition System (SAS) solar tracker system. Recently, an application for mobile devices, “HydroColor”, was developed to acquire water reflectance data. We examined the accuracy of the water reflectance measures acquired by HydroColor with the help of both trained and untrained citizens, under different environmental conditions. We used water reflectance data acquired by SAS solar tracker and by HydroColor onboard the BC ferry Queen of Oak Bay from July to September 2016. Monte Carlo permutation F tests were used to assess whether the differences between measurements collected by SAS solar tracker and HydroColor with citizens were significant. Results showed that citizen HydroColor measurements were accurate in red, green, and blue bands, as well as red/green and red/blue ratios under different environmental conditions. In addition, we found that a trained citizen obtained higher quality HydroColor data especially under clear skies at noon

    A contact tracing SIR model for randomly mixed populations

    No full text
    Contact tracing is an important intervention measure to control infectious diseases. We present a new approach that borrows the edge dynamics idea from network models to track contacts included in a compartmental SIR model for an epidemic spreading in a randomly mixed population. Unlike network models, our approach does not require statistical information of the contact network, data that are usually not readily available. The model resulting from this new approach allows us to study the effect of contact tracing and isolation of diagnosed patients on the control reproduction number and number of infected individuals. We estimate the effects of tracing coverage and capacity on the effectiveness of contact tracing. Our approach can be extended to more realistic models that incorporate latent and asymptomatic compartments
    corecore