2 research outputs found

    Emergence of Fosfomycin Resistance by Plasmid-Mediated <i>fos</i> Genes in Uropathogenic ESBL-Producing <i>E. coli</i> Isolates in Mexico

    No full text
    Fosfomycin is currently a viable option against urinary tract infections, particularly against extended-spectrum β-lactamases (ESBL)-producing E. coli, due to its unique mechanism of action and its low resistance among bacteria. The objective of this study was to investigate two of the three most common mechanisms of resistance against this antibiotic among 350 ESBL-producing E. coli strains isolated from the urine of Mexican patients. The prevalence of fosfomycin resistance in our study was 10.9% (38/350). Of all resistant isolates analyzed, 23 (60.5%) were identified as fos-producing organisms, with 14 strains carrying fosA3 and 9, fosA1. Additionally, 11 (28.9%) fosfomycin-resistant isolates presented resistance due to impaired antibiotic transport and 8 (21.0%) both mechanisms. No resistance mechanism investigated in the study was found on 12 strains. All 38 confirmed ESBL-producing isolates carried a blaCTX-M subtype, 36 (94.5%) belonged to the O25b-ST131 clone, and all of them were able to transfer the fosfomycin resistance trait to recipient strains horizontally. This is the first study in Mexico demonstrating a plasmid-mediated fosfomycin resistance mechanism among clinical E. coli strains. Since our results suggest a strong association among fos and blaCTX-M genes and ST131 clones in uropathogenic E. coli, plasmid-mediated fosfomycin resistance should be closely monitored

    Active Surveillance of Antimicrobial Resistance and Carbapenemase-Encoding Genes According to Sites of Care and Age Groups in Mexico: Results from the INVIFAR Network

    No full text
    We analyzed the antimicrobial resistance (AMR) data of 6519 clinical isolates of Escherichia coli (n = 3985), Klebsiella pneumoniae (n = 775), Acinetobacter baumannii (n = 163), Pseudomonas aeruginosa (n = 781), Enterococcus faecium (n = 124), and Staphylococcus aureus (n = 691) from 43 centers in Mexico. AMR assays were performed using commercial microdilution systems (37/43) and the disk diffusion susceptibility method (6/43). The presence of carbapenemase-encoding genes was assessed using PCR. Data from centers regarding site of care, patient age, and clinical specimen were collected. According to the site of care, the highest AMR was observed in E. coli, K. pneumoniae, and P. aeruginosa isolates from ICU patients. In contrast, in A. baumannii, higher AMR was observed in isolates from hospitalized non-ICU patients. According to age group, the highest AMR was observed in the ≥60 years age group for E. coli, E. faecium, and S. aureus, and in the 19–59 years age group for A. baumannii and P. aeruginosa. According to clinical specimen type, a higher AMR was observed in E. coli, K. pneumoniae, and P. aeruginosa isolates from blood specimens. The most frequently detected carbapenemase-encoding gene in E. coli was blaNDM (84%)
    corecore