50 research outputs found
Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation
Gestational Age Variation in Human Placental Drug Transporters
Patient and providers\u27 fear of fetal exposure to medications may lead to discontinuation of treatment, disease relapse, and maternal morbidity. Placental drug transporters play a critical role in fetal exposure through active transport but the majority of data are limited to the 3rd trimester, when the majority of organogenesis has already occurred. Our objective was to define gestational age (GA) dependent changes in protein activity, expression and modifications of five major placental drug transporters: SERT, P-gp, NET, BCRP and MRP3. Apical brush border membrane fractions were prepared from fresh 1st, 2nd and 3rd trimester human placentas collected following elective pregnancy termination or planned cesarean delivery. A structured maternal questionnaire was used to identify maternal drug use and exclude exposed subjects. Changes in placental transporter activity and expression relative to housekeeping proteins were quantified. There was evidence for strong developmental regulation of SERT, NET, P-gp, BCRP and MRP3. P-gp and BCRP decreased with gestation (r = -0.72
Mesenchymal Stem Cells Suppress Inflammatory Cytokines in Lipopolysaccharide Exposed Preterm and Term Human Pregnant Myometrial Cells
Objective  The objective of this study was to determine the cytokine response in human pregnant preterm and term myometrial cells exposed to lipopolysaccharide (LPS) and cocultured with mesenchymal stem cells (MSCs).
Study Design  Myometrium was obtained at cesarean delivery in term and preterm patients. Human myometrial cells were exposed to 5 μg/mL LPS for 4 hours followed by 1 μg/mL LPS for 24 hours and were cocultured with MSCs for 24 hours. Culture supernatants were collected at 24 hours and expression of cytokines, including interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and IL-10, was quantified by enzyme-linked immunosorbent assay.
Results  There was significantly increased expression of the proinflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in preterm myometrial cells treated with LPS compared with untreated preterm myometrial cells. Coculture with MSCs significantly suppressed the proinflammatory cytokine levels in LPS-treated preterm versus treated term myometrial cells. Moreover, MSC cocultured preterm myometrial cells expressed increased levels of the anti-inflammatory cytokines TGF-β and IL-10 compared with treated term myometrial cells.
Conclusion  MSCs ameliorate LPS-mediated inflammation in preterm human myometrial cells compared with term myometrial cells. Immunomodulatory effects of MSCs mediated through anti-inflammatory cytokine regulation suggest a potential cell-based therapy for preterm birth
Mesenchymal Stem Cells Suppress Inflammatory Cytokines in Lipopolysaccharide Exposed Preterm and Term Human Pregnant Myometrial Cells
Objective  The objective of this study was to determine the cytokine response in human pregnant preterm and term myometrial cells exposed to lipopolysaccharide (LPS) and cocultured with mesenchymal stem cells (MSCs).
Study Design  Myometrium was obtained at cesarean delivery in term and preterm patients. Human myometrial cells were exposed to 5 μg/mL LPS for 4 hours followed by 1 μg/mL LPS for 24 hours and were cocultured with MSCs for 24 hours. Culture supernatants were collected at 24 hours and expression of cytokines, including interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and IL-10, was quantified by enzyme-linked immunosorbent assay.
Results  There was significantly increased expression of the proinflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in preterm myometrial cells treated with LPS compared with untreated preterm myometrial cells. Coculture with MSCs significantly suppressed the proinflammatory cytokine levels in LPS-treated preterm versus treated term myometrial cells. Moreover, MSC cocultured preterm myometrial cells expressed increased levels of the anti-inflammatory cytokines TGF-β and IL-10 compared with treated term myometrial cells.
Conclusion  MSCs ameliorate LPS-mediated inflammation in preterm human myometrial cells compared with term myometrial cells. Immunomodulatory effects of MSCs mediated through anti-inflammatory cytokine regulation suggest a potential cell-based therapy for preterm birth
In Utero Ethanol Exposure Induces Mitochondrial DNA Damage and Inhibits MtDNA Repair in Developing Brain
Introduction
Mitochondrial dysfunction is postulated to be a central event in fetal alcohol spectrum disorders (FASD). People with the most severe form of FASD, fetal alcohol syndrome (FAS) are estimated to live only 34 years (95% confidence interval, 31 to 37 years), and adults who were born with any form of FASD often develop early aging. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage, hallmarks of aging, are postulated central events in FASD. Ethanol (EtOH) can cause mtDNA damage, consequent increased oxidative stress, and changes in the mtDNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1). Studies of molecular mechanisms are limited by the absence of suitable human models and non-invasive tools. Methods
We compared human and rat EtOH-exposed fetal brain tissues and neuronal cultures, and fetal brain-derived exosomes (FB-Es) from maternal blood. Rat FASD was induced by administering a 6.7% alcohol liquid diet to pregnant dams. Human fetal (11–21 weeks) brain tissue was collected and characterized by maternal self-reported EtOH use. mtDNA was amplified by qPCR. OGG1 and Insulin-like growth factor 1 (IGF-1) mRNAs were assayed by qRT-PCR. Exosomal OGG1 was measured by ddPCR. Results
Maternal EtOH exposure increased mtDNA damage in fetal brain tissue and FB-Es. The damaged mtDNA in FB-Es correlated highly with small eye diameter, an anatomical hallmark of FASD. OGG1-mediated mtDNA repair was inhibited in EtOH-exposed fetal brain tissues. IGF-1 rescued neurons from EtOH-mediated mtDNA damage and OGG1 inhibition. Conclusion
The correlation between mtDNA damage and small eye size suggests that the amount of damaged mtDNA in FB-E may serve as a marker to predict which at risk fetuses will be born with FASD. Moreover, IGF-1 might reduce EtOH-caused mtDNA damage and neuronal apoptosis
Biomarkers of Affective Dysregulation Associated with In Utero Exposure to EtOH
INTRODUCTION: Children with fetal alcohol spectrum disorders (FASD) exhibit behavioral and affective dysregulation, including hyperactivity and depression. The mechanisms are not known, but they could conceivably be due to postnatal social or environmental factors. However, we postulate that, more likely, the affective dysregulation is associated with the effects of EtOH exposure on the development of fetal serotonergic (5-HT) and/or dopaminergic (DA) pathways, i.e., pathways that in postnatal life are believed to regulate mood. Many women who use alcohol (ethanol, EtOH) during pregnancy suffer from depression and take selective serotonin reuptake inhibitors (SSRIs), which might influence these monoaminergic pathways in the fetus. Alternatively, monoaminergic pathway abnormalities might reflect a direct effect of EtOH on the fetal brain. To distinguish between these possibilities, we measured their expressions in fetal brains and in fetal brain-derived exosomes (FB-Es) isolated from the mothers\u27 blood. We hypothesized that maternal use of EtOH and/or SSRIs during pregnancy would be associated with impaired fetal neural development, detectable as abnormal levels of monoaminergic and apoptotic biomarkers in FB-Es.
METHODS: Fetal brain tissues and maternal blood were collected at 9-23 weeks of pregnancy. EtOH groups were compared with unexposed controls matched for gestational age (GA). The expression of 84 genes associated with the DA and 5-HT pathways was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on microarrays. FB-Es also were assayed for serotonin transporter protein (SERT) and brain-derived neurotrophic factor (BDNF) by enzyme-linked immunosorbent assay (ELISA).
RESULTS: Six EtOH-exposed human fetal brain samples were compared to SSRI- or polydrug-exposed samples and to unexposed controls. EtOH exposure was associated with significant upregulation of DA receptor D3 and 5-HT receptor HTR2C, while HTR3A was downregulated. Monoamine oxidase A (MAOA), MAOB, the serine/threonine kinase AKT3, and caspase-3 were upregulated, while mitogen-activated protein kinase 1 (MAPK1) and AKT2 were downregulated. ETOH was associated with significant upregulation of the DA transporter gene, while SERT was downregulated. There were significant correlations between EtOH exposure and (a) caspase-3 activation, (b) reduced SERT protein levels, and (c) reduced BDNF levels. SSRI exposure independently increased caspase-3 activity and downregulated SERT and BDNF. Early exposure to EtOH and SSRI together was associated synergistically with a significant upregulation of caspase-3 and a significant downregulation of SERT and BDNF. Reduced SERT and BDNF levels were strongly correlated with a reduction in eye diameter, a somatic manifestation of FASD.
CONCLUSIONS: Maternal use of EtOH and SSRI during pregnancy each was associated with changes in fetal brain monoamine pathways, consistent with potential mechanisms for the affective dysregulation associated with FASD
Effects of In Utero EtOH Exposure on 18S Ribosomal RNA Processing: Contribution to Fetal Alcohol Spectrum Disorder
Fetal alcohol spectrum disorders (FASD) are leading causes of neurodevelopmental disability. The mechanisms by which alcohol (EtOH) disrupts fetal brain development are incompletely understood, as are the genetic factors that modify individual vulnerability. Because the phenotype abnormalities of FASD are so varied and widespread, we investigated whether fetal exposure to EtOH disrupts ribosome biogenesis and the processing of pre-ribosomal RNAs and ribosome assembly, by determining the effect of exposure to EtOH on the developmental expression of 18S rRNA and its cleaved forms, members of a novel class of short non-coding RNAs (srRNAs). In vitro neuronal cultures and fetal brains (11–22 weeks) were collected according to an IRB-approved protocol. Twenty EtOH-exposed brains from the first and second trimester were compared with ten unexposed controls matched for gestational age and fetal gender. Twenty fetal-brain-derived exosomes (FB-Es) were isolated from matching maternal blood. RNA was isolated using Qiagen RNA isolation kits. Fetal brain srRNA expression was quantified by ddPCR. srRNAs were expressed in the human brain and FB-Es during fetal development. EtOH exposure slightly decreased srRNA expression (1.1-fold; p = 0.03). Addition of srRNAs to in vitro neuronal cultures inhibited EtOH-induced caspase-3 activation (1.6-fold, p = 0.002) and increased cell survival (4.7%, p = 0.034). The addition of exogenous srRNAs reversed the EtOH-mediated downregulation of srRNAs (2-fold, p = 0.002). EtOH exposure suppressed expression of srRNAs in the developing brain, increased activity of caspase-3, and inhibited neuronal survival. Exogenous srRNAs reversed this effect, possibly by stabilizing endogenous srRNAs, or by increasing the association of cellular proteins with srRNAs, modifying gene transcription. Finally, the reduction in 18S rRNA levels correlated closely with the reduction in fetal eye diameter, an anatomical hallmark of FASD. The findings suggest a potential mechanism for EtOH-mediated neurotoxicity via alterations in 18S rRNA processing and the use of FB-Es for early diagnosis of FASD. Ribosome biogenesis may be a novel target to ameliorate FASD in utero or after birth. These findings are consistent with observations that gene–environment interactions contribute to FASD vulnerability
Fetal Brain-Derived Exosomal miRNAs from Maternal Blood: Potential Diagnostic Biomarkers for Fetal Alcohol Spectrum Disorders (FASDs)
Fetal alcohol spectrum disorders (FASDs) are leading causes of neurodevelopmental disability but cannot be diagnosed early in utero. Because several microRNAs (miRNAs) are implicated in other neurological and neurodevelopmental disorders, the effects of EtOH exposure on the expression of these miRNAs and their target genes and pathways were assessed. In women who drank alcohol (EtOH) during pregnancy and non-drinking controls, matched individually for fetal sex and gestational age, the levels of miRNAs in fetal brain-derived exosomes (FB-Es) isolated from the mothers’ serum correlated well with the contents of the corresponding fetal brain tissues obtained after voluntary pregnancy termination. In six EtOH-exposed cases and six matched controls, the levels of fetal brain and maternal serum miRNAs were quantified on the array by qRT-PCR. In FB-Es from 10 EtOH-exposed cases and 10 controls, selected miRNAs were quantified by ddPCR. Protein levels were quantified by ELISA. There were significant EtOH-associated reductions in the expression of several miRNAs, including miR-9 and its downstream neuronal targets BDNF, REST, Synapsin, and Sonic hedgehog. In 20 paired cases, reductions in FB-E miR-9 levels correlated strongly with reductions in fetal eye diameter, a prominent feature of FASDs. Thus, FB-E miR-9 levels might serve as a biomarker to predict FASDs in at-risk fetuses
Maternal Blood Lipid Biomarkers of Oligodendrocyte Pathology to Predict Fetal Alcohol Spectrum Disorders
INTRODUCTION: Up to 9.9% of children have fetal alcohol spectrum disorders (FASD), the most frequent cause of intellectual disability in the US. FASD may involve abnormal brain development, including dysmyelination, suggesting abnormal development of oligodendrocytes (OLs), which make myelin and are rich in lipids. Indeed, low serum levels of omega-3 fatty acids (ω-3) have been reported in FASD. Free fatty acids bind to specific receptors (FFARs). We have isolated cell type-specific fetal brain-derived exosomes (FB-E) from maternal blood and sampled their contents to search for lipid-related biomarkers that predict FASD.
METHODS: Blood samples were collected from two groups of pregnant women: 1) those who consumed EtOH during pregnancy, and 2) non-EtOH using controls, under an IRB-approved protocol. Serum and OL-derived exosomes (OL-Es) were used to assay myelin basic protein (MBP) and FFAR by ELISA and droplet digital PCR (ddPCR), respectively.
RESULTS: FFAR and MBP proteins were downregulated in the EtOH group compared to controls, and this difference was greatest in OL-Es from maternal blood compared maternal serum.
CONCLUSION: MBP and FFAR levels were reduced in OL-Es from EtOH-consuming pregnant women. The data suggest potential therapeutic targets to predict which children are at risk for developing FASD and reduce dysmyelination in developing
Exosomal Lipid Biomarkers of Oligodendrocyte Pathology to Predict Scoliosis in Children with Cerebral Palsy
INTRODUCTION: Cerebral Palsy (CP), the most common cause of disability in children, is phenotypically heterogeneous. Approximately 20% of cases develop severe scoliosis. A pathological hallmark of CP is periventricular leukomalacia (PVL), which is due to dysmyelination, suggesting the possibility of a lipidomic abnormality. Risk factors for CP include perinatal hypoxia, prematurity, multiple gestation, ischemia, infection, and maternal alcohol consumption. There is evidence for low serum levels of omega-3 (ω-3) fatty acids in CP patients, and separately in idiopathic scoliosis. Many effects of free fatty acids (FFAs) are mediated via specific G protein-coupled free fatty acid receptors (FFARs), which play essential roles as nutritional and signaling molecules. FFAs, including ω-3, and their receptors are involved in the development and metabolism of oligodendrocytes (OLs), and are critical to myelination. Thus, the cases of CP that will develop severe scoliosis might be those in which there is a deficiency of ω-3, FFARs, or other lipidomic abnormality that is detectable early in the plasma. If so, we might be able to predict scoliosis and prevent it with dietary supplementation.
METHODS: Blood samples were collected from four groups of patients at the Philadelphia Shriners Children\u27s Hospital (SCH-P): 1) patients with CP; 2) severe scoliosis (\u3e40o); 3) CP plus scoliosis; and 4) non-impaired controls stratified by age (2-18 yrs), gender, and race/ethnicity, under an IRB-approved protocol. Serum proteins and RNA were purified, and OL-derived exosomes (OL-Es) isolated, using myelin basic protein (MBP) as a late OL marker. Protein was used for the detection of MBP and FFAR by enzyme-linked immunosorbent assays (ELISAs), and by flow cytometry. RNA was assayed by digital droplet polymerase chain reaction (ddPCR) for OL markers and FFAR expression.
RESULTS: FFAR and MBP proteins were downregulated in each of the three patient groups compared to controls, and this difference was greatest in both patients with CP plus scoliosis.
CONCLUSION: Altogether, MBP and FFAR levels were reduced in OL-Es from both children with CP plus scoliosis. The lipid abnormalities specific to CP with scoliosis were concentrated in OLs. Our data might i) suggest therapeutic targets to reduce dysmyelination and scoliosis in CP, ii) predict which children are at risk for developing scoliosis, iii) lead to therapeutic trials of fatty acids for CP and other dysmyelinating neurological disorders