4 research outputs found

    Reconstruction of rearranged T-cell receptor loci by whole genome and transcriptome sequencing gives insights into the initial steps of T-cell prolymphocytic leukemia

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is an aggressive tumor with leukemic presentation of mature T-lymphocytes. Here, we aimed at characterizing the initial events in the molecular pathogenesis of T-PLL and particularly, at determining the point in T-cell differentiation when the hallmark oncogenic events, that is, inv(14)(q11q32)/t(14;14)(q11;q32) and t(X;14)(q28;q11) occur. To this end, we mined whole genome and transcriptome sequencing data of 17 and 11 T-PLL cases, respectively. Mapping of the 14q32.1 locus breakpoints identified only TCL1A, which was moreover significantly overexpressed in T-PLL as compared to benign CD4+ and CD8+ T-cells, as the only common oncogenic target of aberrations. In cases with t(14;14), the breakpoints mapped telomeric and in cases with inv(14) centromeric or in the 3 '-untranslated region of TCL1A. Regarding the T-cell receptor alpha (TRA) locus-TCL1A breakpoint junctions, all 17 breakpoints involved recombination signal sequences and 15 junctions contained nontemplated (N-) nucleotides. All T-PLL cases studied carried in-frame TRA rearrangements on the intact allele, which skewed significantly toward usage of distal/central TRAV/TRAJ gene segments as compared to the illegitimate TRA rearrangements. Our findings suggest that the oncogenic TRA-TCL1A/MTCP1 rearrangements in T-PLL occur during opening of the TRA locus, that is, during the progression from CD4+ immature single positive to early double positive thymocyte stage, just before physiologic TCL1A expression is silenced. The cell carrying such an oncogenic event continues maturation and rearranges the second TRA allele to achieve a functional T-cell receptor. Thereafter, it switches off RAG and DNTT expression in line with the mature T-cell phenotype at presentation of T-PLL

    Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models

    Get PDF
    Colorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called consensus molecular subtypes (CMS1-4), each of which has a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. Combined our data indicate that molecular subtypes are faithfully modelled in CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity
    corecore