26 research outputs found

    Microscopic mechanism for fluctuating pair density wave

    Full text link
    In weakly coupled BCS superconductors, only electrons within a tiny energy window around the Fermi energy, EFE_F, form Cooper pairs. This may not be the case in strong coupling superconductors such as cuprates, FeSe, SrTiO3_3 or cold atom condensates where the pairing scale, EBE_B, becomes comparable or even larger than EFE_F. In cuprates, for example, a plausible candidate for the pseudogap state at low doping is a fluctuating pair density wave, but no microscopic model has yet been found which supports such a state. In this work, we write an analytically solvable model to examine pairing phases in the strongly coupled regime and in the presence of anisotropic interactions. Already for moderate coupling we find an unusual finite temperature phase, below an instability temperature TiT_i, where local pair correlations have non-zero center-of-mass momentum but lack long-range order. At low temperature, this fluctuating pair density wave can condense either to a uniform dd-wave superconductor or the widely postulated pair-density wave phase depending on the interaction strength. Our minimal model offers a unified microscopic framework to understand the emergence of both fluctuating and long range pair density waves in realistic systems.Comment: 13 pages, 6 figures including Supplemental Materia

    Nematic spectral signatures of the Hund's metal

    Get PDF
    We show, by means of dynamical mean-field theory calculations, that the experimental fingerprints of thenematic order in iron-based superconductors are intrinsically connected with the electronic correlations inthe Hund's correlated metallic state and they cannot be accessed via a renormalized quasiparticle picture. Inparticular, our results show that (i) in a metal in which correlations are dominated by the Hund's coupling thenematic ordering does not produce a rigid energy shift in the photoemission spectra, but a much richer spectralweight redistribution which mirrors the experimental results, and (ii) the nematic ordering is characterized by anorbital-selective coherence induced by the Hund's physics in agreement with the experimental pictur

    Nematicity at the Hund's metal crossover in iron superconductors

    Get PDF
    The theoretical understanding of the nematic state of iron-based superconductors and especially of FeSe is still a puzzling problem. Although a number of experiments call for a prominent role of local correlations and place iron superconductors at the entrance of a Hund's metal state, the effect of the electronic correlations on the nematic state has been theoretically poorly investigated. In this work we study the nematic phase of iron superconductors accounting for local correlations, including the effect of the Hund's coupling. We show that Hund's physics strongly affects the nematic properties of the system. It severely constrains the precise nature of the feasible orbital-ordered state and induces a differentiation in the effective masses of the zx/yz orbitals in the nematic phase. The latter effect leads to distinctive signatures in different experimental probes overlooked so far in the interpretation of experiments. As notable examples the splittings between zx and yz bands at \u393 and M points are modified, with important consequences for angle-resolved photoemission spectroscopy measurements

    Spin-orbital interplay and topology in the nematic phase of iron pnictides

    Get PDF
    The origin of the nematic state is an important puzzle to be solved in iron pnictides. Iron superconductors are multiorbital systems and these orbitals play an important role at low energy. The singular C4 symmetry of dzx and dyz orbitals has a profound influence at the Fermi surface since the \u393 pocket has vortex structure in the orbital space and the X/Y electron pockets have yz/zx components, respectively. We propose a low-energy theory for the spin-nematic model derived from a multiorbital Hamiltonian. In the standard spin-nematic scenario, the ellipticity of the electron pockets is a necessary condition for nematicity. In the present model, nematicity is essentially due to the singular C4 symmetry of yz and zx orbitals. By analyzing the (\u3c0,0) spin susceptibility in the nematic phase, we find a spontaneous generation of orbital splitting, extending previous calculations in the magnetic phase. We also find that the (\u3c0,0) spin susceptibility has an intrinsic anisotropic momentum dependence due to the nontrivial topology of the \u393 pocket

    The Role of Orbital Nesting in the Superconductivity of Iron-Based Superconductors

    Get PDF
    We analyze the magnetic excitations and the spin-mediated superconductivity in iron-based superconductors within a low energy model that operates in the band basis, but fully incorporates the orbital character of the spin excitations. We show how the orbital selectivity, encoded in our low energy description, simplifies substantially the analysis and allows for analytical treatments, while retaining all the main features of both spin excitations and gap functions computed using multiorbital models. Importantly, our analysis unveils the orbital matching between the hole and electron pockets as the key parameter to determine the momentum dependence and the hierarchy of the superconducting gaps, instead of the Fermi surface matching, as in the common nesting scenario

    Charge Disproportionation, Mixed Valence, and Janus Effect in Multiorbital Systems: A Tale of Two Insulators

    Get PDF
    Multiorbital Hubbard models host strongly correlated "Hund's metals" even for interactions much stronger than the bandwidth. We characterize this interaction-resilient metal as a mixed-valence state. In particular, it can be pictured as a bridge between two strongly correlated insulators: a high-spin Mott insulator and a charge-disproportionated insulator which is stabilized by a very large Hund's coupling. This picture is confirmed comparing models with negative and positive Hund's coupling for different fillings. Our results provide a characterization of the Hund's metal state and connect its presence with charge disproportionation, which has indeed been observed in chromates and proposed to play a role in iron-based superconductors

    Exact solution for finite center-of-mass momentum Cooper pairing

    Full text link
    Pair density waves (PDWs) are superconducting states formed by ``Cooper pairs" of electrons containing a non-zero center-of-mass momentum. They are characterized by a spatially modulated order parameter and may occur in a variety of emerging quantum materials such as cuprates, transition metal dichalcogenides (TMDs) and Kagome metals. Despite extensive theoretical and numerical studies seeking PDWs in a variety of lattices and interacting settings, there is currently no generic and robust mechanism that favors a modulated solution of the superconducting order parameter in the presence of time reversal symmetry. Here, we study the problem of two electrons subject to an anisotropic (dd-wave) attractive potential. We solve the two-body Schrodinger wave equation exactly to determine the pair binding energy as a function of the center-of-mass momentum. We find that a modulated (finite momentum) pair is favored over a homogeneous (zero momentum) solution above a critical interaction. Using this insight from the exact two-body solution, we construct a BCS-like variational many-body wave function and calculate the free energy and superconducting gap as a function of the center-of-mass momentum. A zero temperature analysis of the energy shows that the conclusions of the two-body problem are robust in the many-body limit. Our results lay the theoretical and microscopic foundation for the existence of PDWs.Comment: 24 pages, 6 figure

    Remarkable low-energy properties of the pseudogapped semimetal Be5Pt

    Get PDF
    We report measurements and calculations on the properties of the intermetallic compound Be5Pt. High-quality polycrystalline samples show a nearly constant temperature dependence of the electrical resistivity over a wide temperature range. On the other hand, relativistic electronic structure calculations indicate the existence of a narrow pseudogap in the density of states arising from accidental approximate Dirac cones extremely close to the Fermi level. A small true gap of order 3c3 meV is present at the Fermi level, yet the measured resistivity is nearly constant from low to room temperature. We argue that this unexpected behavior can be understood by a cancellation of the energy dependence of density of states and relaxation time due to disorder, and discuss a model for electronic transport. With applied pressure, the resistivity becomes semiconducting, consistent with theoretical calculations that show that the bandgap increases with applied pressure. We further discuss the role of Be inclusions in the samples

    Ultrafast orbital manipulation and Mott physics in multi-band correlated materials

    Get PDF
    Multiorbital correlated materials are often on the verge of multiple electronic phases (metallic, insulating, superconducting, charge and orbitally ordered), which can be explored and controlled by small changes of the external parameters. The use of ultrashort light pulses as a mean to transiently modify the band population is leading to fundamentally new results. In this paper we will review recent advances in the field and we will discuss the possibility of manipulating the orbital polarization in correlated multi-band solid state systems. This technique can provide new understanding of the ground state properties of many interesting classes of quantum materials and offers a new tool to induce transient emergent properties with no counterpart at equilibrium. We will address: the discovery of high-energy Mottness in superconducting copper oxides and its impact on our understanding of the cuprate phase diagram; the instability of the Mott insulating phase in photoexcited vanadium oxides; the manipulation of orbital-selective correlations in iron-based superconductors; the pumping of local electronic excitons and the consequent transient effective quasiparticle cooling in alkali-doped fullerides. Finally, we will discuss a novel route to manipulate the orbital polarization in a a k-resolved fashion

    Notulae to the Italian alien vascular flora: 14

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, and status changes for Italy or for Italian administrative regions. Nomenclatural and distribution updates, published elsewhere, and corrections are provided as Suppl. materia
    corecore