27 research outputs found

    Patient-specific Bacteroides genome variants in pouchitis

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mBio 7 (2016): e01713-16, doi:10.1128/mBio.01713-16.A 2-year longitudinal microbiome study of 22 patients who underwent colectomy with an ileal pouch anal anastomosis detected significant increases in distinct populations of Bacteroides during 9 of 11 patient visits that coincided with inflammation (pouchitis). Oligotyping and metagenomic short-read annotation identified Bacteroides populations that occurred in early samples, bloomed during inflammation, and reappeared after antibiotic treatment. Targeted cultivation of Bacteroides isolates from the same individual at multiple time points and from several patients detected subtle genomic changes, including the identification of rapidly evolving genomic elements that differentiate isogenic strains of Bacteroides fragilis from the mucosa versus lumen. Each patient harbored Bacteroides spp. that are closely related to commonly occurring clinical isolates, including Bacteroides ovatus, B. thetaiotaomicron, B. vulgatus, and B. fragilis, which contained unique loci in different patients for synthesis of capsular polysaccharides. The presence of unique Bacteroides capsular polysaccharide loci within different hosts and between the lumen and mucosa may represent adaptations to stimulate, suppress, and evade host-specific immune responses at different microsites of the ileal pouch.Leona M. and Harry B. Helmsley Charitable Trust; Bay and Paul Foundations; Frank R. Lillie Research Innovation Award; Gastrointestinal Research Foundation of Chicag

    Comparison of brush and biopsy sampling methods of the ileal pouch for assessment of mucosa-associated microbiota of human subjects

    Get PDF
    BACKGROUND: Mucosal biopsy is the most common sampling technique used to assess microbial communities associated with the intestinal mucosa. Biopsies disrupt the epithelium and can be associated with complications such as bleeding. Biopsies sample a limited area of the mucosa, which can lead to potential sampling bias. In contrast to the mucosal biopsy, the mucosal brush technique is less invasive and provides greater mucosal coverage, and if it can provide equivalent microbial community data, it would be preferable to mucosal biopsies. RESULTS: We compared microbial samples collected from the intestinal mucosa using either a cytology brush or mucosal biopsy forceps. We collected paired samples from patients with ulcerative colitis (UC) who had previously undergone colectomy and ileal pouch anal anastomosis (IPAA), and profiled the microbial communities of the samples by sequencing V4-V6 or V4-V5 16S rRNA-encoding gene amplicons. Comparisons of 177 taxa in 16 brush-biopsy sample pairs had a mean R(2) of 0.94. We found no taxa that varied significantly between the brush and biopsy samples after adjusting for multiple comparisons (false discovery rate ≤0.05). We also tested the reproducibility of DNA amplification and sequencing in 25 replicate pairs and found negligible variation (mean R(2) = 0.99). A qPCR analysis of the two methods showed that the relative yields of bacterial DNA to human DNA were several-fold higher in the brush samples than in the biopsies. CONCLUSIONS: Mucosal brushing is preferred to mucosal biopsy for sampling the epithelial-associated microbiota. Although both techniques provide similar assessments of the microbial community composition, the brush sampling method has relatively more bacterial to host DNA, covers a larger surface area, and is less traumatic to the epithelium than the mucosal biopsy

    Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of American Physiological Society for personal use, not for redistribution. The definitive version was published in American Journal of Physiology-Gastrointestinal and Liver Physiology 310 (2016): G973-G988, doi:10.1152/ajpgi.00017.2016.Gut dysbiosis, host genetics, and environmental triggers are implicated as causative factors in inflammatory bowel disease (IBD), yet mechanistic insights are lacking. Longitudinal analysis of ulcerative colitis patients following total colectomy with ileal anal anastomosis (IPAA) where >50% develop pouchitis, offers a unique setting to examine cause vs. effect. To recapitulate human IPAA, we employed a mouse model of surgically created blind self-filling (SFL) and self- emptying (SEL) ileal loops using wild-type (WT), IL-10 KO (IL10), and TLR4 KO (T4), and IL10/T4 double KO mice. After 5 weeks, loop histology, host gene/protein expression, and bacterial 16s rRNA profiles were examined. SFL exhibit fecal stasis due to directional motility oriented towards the loop end, whereas SEL remain empty. In wild type mice, SFL, but not SEL, develop pouch-like microbial communities without accompanying active inflammation. However, in genetically susceptible IL-10-/- deficient mice, SFL, but not SEL, exhibit severe inflammation and mucosal transcriptomes resembling human pouchitis. The inflammation associated with IL- 10-/- required TLR4, as animals lacking both pathways displayed little disease. Furthermore, germ-free IL10-/- mice conventionalized with SFL, but not SEL, microbiota populations develop severe colitis. These data support essential roles of stasis-induced, colon-like microbiota, TLR4- mediated colonic metaplasia, and genetic susceptibility in the development of pouchitis and possibly UC. However, these factors by themselves are not sufficient. Similarities between this model and human UC/pouchitis provide opportunities for gaining insights into the mechanistic basis of IBD and for identification of targets for novel preventative and therapeutic interventions.NIDDK DK42086 (DDRCC), UH3 DK083993, Leona and Harry Helmsley Trust (SHARE), R37 DK47722, T32 DK07074, F32 DK105728, Gastrointestinal Research Foundation of Chicago, Peter and Carol Goldman Family Research grant.2017-06-0

    Appropriate Therapeutic Drug Monitoring of Biologic Agents for Patients With Inflammatory Bowel Diseases.

    Get PDF
    BACKGROUND & AIMS: Therapeutic drug monitoring (TDM) is widely available for biologic therapies in patients with inflammatory bowel disease (IBD). We reviewed current data and provided expert opinion regarding the clinical utility of TDM for biologic therapies in IBD. METHODS: We used a modified Delphi method to establish consensus. A comprehensive literature review was performed regarding the use of TDM of biologic therapy in IBD and presented to international IBD specialists. Subsequently, 28 statements on the application of TDM in clinical practice were rated on a scale of 1 to 10 (1 = strongly disagree and 10 = strongly agree) by each of the panellists. Statements were accepted if 80% or more of the participants agreed with a score ≥7. The remaining statements were discussed and revised based on the available evidence followed by a second round of voting. RESULTS: The panel agreed on 24 (86%) statements. For anti-tumor necrosis factor (anti-TNF) therapies, proactive TDM was found to be appropriate after induction and at least once during maintenance therapy, but this was not the case for the other biologics. Reactive TDM was appropriate for all agents both for primary non-response and secondary loss of response. The panellists also agreed on several statements regarding TDM and appropriate drug and anti-drug antibody (ADA) concentration thresholds for biologics in specific clinical scenarios. CONCLUSION: Consensus was achieved towards the utility of TDM of biologics in IBD, particularly anti-TNF therapies. More data are needed especially on non-anti-TNF biologics to further define optimal drug concentration and ADA thresholds as these can vary depending on the therapeutic outcomes assessed
    corecore