399 research outputs found
Advances in autophagy regulatory mechanisms
Autophagy plays a critical role in cell metabolism by degrading and recycling internal components when challenged with limited nutrients. This fundamental and conserved mechanism is based on a membrane trafficking pathway in which nascent autophagosomes engulf cytoplasmic cargo to form vesicles that transport their content to the lysosome for degradation. Based on this simple scheme, autophagy modulates cellular metabolism and cytoplasmic quality control to influence an unexpectedly wide range of normal mammalian physiology and pathophysiology. In this review, we summarise recent advancements in three broad areas of autophagy regulation. We discuss current models on how autophagosomes are initiated from endogenous membranes. We detail how the uncoordinated 51-like kinase (ULK) complex becomes activated downstream of mechanistic target of rapamycin complex 1 (MTORC1). Finally, we summarise the upstream signalling mechanisms that can sense amino acid availability leading to activation of MTORC1
AMPK inhibits ULK1-dependent autophagosome formation and lysosomal acidification via distinct mechanisms
Autophagy maintains metabolism in response to starvation but each nutrient is sensed distinctly. Amino acid deficiency suppresses mechanistic target of rapamycin complex 1 (MTORC1) while glucose deficiency promotes AMP-activated protein kinase (AMPK). MTORC1 and AMPK signalling pathways converge onto the ULK1/2 autophagy initiation complex. Here, we show that amino acid starvation promoted formation of ULK1- and Sequestosome1/p62-positive early autophagosomes. Autophagosome initiation was controlled by MTORC1 sensing glutamine, leucine and arginine levels together. By contrast, glucose starvation promoted AMPK activity, phosphorylation of ULK1 Ser 555 and LC3-II accumulation, but with dynamics consistent with a block in autophagy flux. We studied the flux pathway and found that starvation of amino acid, but not of glucose, activated lysosomal acidification, which occurred independently of autophagy and ULK1. Further to lack of activation, glucose starvation inhibited the ability of amino acid starvation to activate both autophagosome formation and the lysosome. Activation of AMPK and phosphorylation of ULK1 were determined to specifically inhibit autophagosome formation. AMPK activation also was sufficient to prevent lysosome acidification. These results indicate concerted but distinct AMPK-dependent mechanisms to suppress early and late phases of autophagy
Lysosomotropism depends on glucose : a chloroquine resistance mechanism
There has been long-standing interest in targeting pro-survival autophagy as a combinational cancer therapeutic strategy. Clinical trials are in progress testing Chloroquine (CQ) or its derivatives in combination with chemo- or radio-therapy for solid and haematological cancers. While CQ has shown efficacy in pre-clinical models, its mechanism of action remains equivocal. Here, we tested how effectively CQ sensitises metastatic breast cancer cells to further stress conditions such as ionising irradiation, doxorubicin, PI3K-Akt inhibition and serum withdrawal. Contrary to the conventional model, the cytotoxic effects of CQ were found to be autophagy-independent, since genetic targeting of ATG7 or the ULK1/2 complex could not sensitise cells, like CQ, to serum depletion. Interestingly, while CQ combined with serum starvation was robustly cytotoxic, further glucose starvation under these conditions led to a full rescue of cell viability. Inhibition of hexokinase using 2-deoxyglucose (2DG) similarly led to CQ resistance. As this form of cell death did not resemble classical caspase-dependent apoptosis, we hypothesised that CQ-mediated cytotoxicity was primarily via a lysosome-dependent mechanism. Indeed, CQ treatment led to marked lysosomal swelling and recruitment of Galectin3 to sites of membrane damage. Strikingly, glucose starvation or 2DG prevented CQ from inducing lysosomal damage and subsequent cell death. Importantly, we found that the related compound, amodiaquine, was more potent than CQ for cell killing and not susceptible to interference from glucose starvation. Taken together, our data indicate that CQ effectively targets the lysosome to sensitise towards cell death but is prone to a glucose-dependent resistance mechanism, thus providing rationale for the related compound amodiaquine (currently used in humans) as a better therapeutic option for cancer
Loss-cone instability modulation due to a magnetohydrodynamic sausage mode oscillation in the solar corona
Solar flares often involve the acceleration of particles to relativistic energies and the generation of high-intensity bursts of radio emission. In some cases, the radio bursts can show periodic or quasiperiodic intensity pulsations. However, precisely how these pulsations are generated is still subject to debate. Prominent theories employ mechanisms such as periodic magnetic reconnection, magnetohydrodynamic (MHD) oscillations, or some combination of both. Here we report on high-cadence (0.25 s) radio imaging of a 228 MHz radio source pulsating with a period of 2.3 s during a solar flare on 2014-April-18. The pulsating source is due to an MHD sausage mode oscillation periodically triggering electron acceleration in the corona. The periodic electron acceleration results in the modulation of a loss-cone instability, ultimately resulting in pulsating plasma emission. The results show that a complex combination of MHD oscillations and plasma instability modulation can lead to pulsating radio emission in astrophysical environments.Peer reviewe
Population immunity to pneumococcal serotypes in Kilifi, Kenya, before and 6 years after the introduction of PCV10 with a catch-up campaign: an observational study of cross-sectional serosurveys
Background
In Kilifi (Kenya), a pneumococcal conjugate vaccine (PCV10) was introduced in 2011 in infants (aged <1 year, 3 + 0 schedule) with a catch-up campaign in children aged 1–4 years. We aimed to measure the effect of PCV10 on population immunity.
Methods
In this observational study, repeated cross-sectional serosurveys were conducted in independent random samples of 500 children younger than 15 years every 2 years between 2009 and 2017. During these surveys, blood samples were collected by venesection. Concentrations of anti-capsular IgGs against vaccine serotypes (VTs) 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F, and against serotypes 6A and 19A, were assayed by ELISA. We plotted the geometric mean concentrations (GMCs) by birth year to visualise age-specific antibody profiles. In infants, IgG concentrations of 0·35 μg/mL or higher were considered protective.
Findings
Of 3673 volunteers approached, 2152 submitted samples for analysis across the five surveys. Vaccine introduction resulted in an increase in the proportion of young children with protective IgG concentrations, compared with before vaccine introduction (from 0–33% of infants with VT-specific levels over the correlate of protection in 2009, to 60–94% of infants in 2011). However, among those vaccinated in infancy, GMCs of all ten VTs had waned rapidly by the age of 1, but rose again later in childhood. GMCs among children aged 10–14 years were consistently high over time (eg, the range of GMCs across survey rounds were between 0·45 μg/mL and 1·00 μg/mL for VT 23F and between 2·00 μg/mL and 3·11 μg/mL for VT 19F).
Interpretation
PCV10 in a 3 + 0 schedule elicited protective IgG levels during infancy, when disease risk is high. The high antibody levels in children aged 10–14 years might indicate continued exposure to vaccine serotypes due to residual carriage or to memory responses to cross-reactive antigens. Despite rapid waning of IgG after vaccination, disease incidence among young children in this setting remains low, suggesting that lower thresholds of antibody, or other markers of immunity (eg, memory B cells), may be needed to assess population protection among children who have aged past infancy.
Funding
Gavi, the Vaccine Alliance; Wellcome Trust
Population immunity to pneumococcal serotypes in Kilifi, Kenya, before and 6 years after the introduction of PCV10 with a catch-up campaign: an observational study of cross-sectional serosurveys
BACKGROUND: In Kilifi (Kenya), a pneumococcal conjugate vaccine (PCV10) was introduced in 2011 in infants (aged <1 year, 3 + 0 schedule) with a catch-up campaign in children aged 1-4 years. We aimed to measure the effect of PCV10 on population immunity. METHODS: In this observational study, repeated cross-sectional serosurveys were conducted in independent random samples of 500 children younger than 15 years every 2 years between 2009 and 2017. During these surveys, blood samples were collected by venesection. Concentrations of anti-capsular IgGs against vaccine serotypes (VTs) 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F, and against serotypes 6A and 19A, were assayed by ELISA. We plotted the geometric mean concentrations (GMCs) by birth year to visualise age-specific antibody profiles. In infants, IgG concentrations of 0·35 μg/mL or higher were considered protective. FINDINGS: Of 3673 volunteers approached, 2152 submitted samples for analysis across the five surveys. Vaccine introduction resulted in an increase in the proportion of young children with protective IgG concentrations, compared with before vaccine introduction (from 0-33% of infants with VT-specific levels over the correlate of protection in 2009, to 60-94% of infants in 2011). However, among those vaccinated in infancy, GMCs of all ten VTs had waned rapidly by the age of 1, but rose again later in childhood. GMCs among children aged 10-14 years were consistently high over time (eg, the range of GMCs across survey rounds were between 0·45 μg/mL and 1·00 μg/mL for VT 23F and between 2·00 μg/mL and 3·11 μg/mL for VT 19F). INTERPRETATION: PCV10 in a 3 + 0 schedule elicited protective IgG levels during infancy, when disease risk is high. The high antibody levels in children aged 10-14 years might indicate continued exposure to vaccine serotypes due to residual carriage or to memory responses to cross-reactive antigens. Despite rapid waning of IgG after vaccination, disease incidence among young children in this setting remains low, suggesting that lower thresholds of antibody, or other markers of immunity (eg, memory B cells), may be needed to assess population protection among children who have aged past infancy. FUNDING: Gavi, the Vaccine Alliance; Wellcome Trust
Genome-wide detection of a TFIID localization element from an initial human disease mutation
Eukaryotic core promoters are often characterized by the presence of consensus motifs such as the TATA box or initiator elements, which attract and direct the transcriptional machinery to the transcription start site. However, many human promoters have none of the known core promoter motifs, suggesting that undiscovered promoter motifs exist in the genome. We previously identified a mutation in the human Ankyrin-1 (ANK-1) promoter that causes the disease ankyrin-deficient Hereditary Spherocytosis (HS). Although the ANK-1 promoter is CpG rich, no discernable basal promoter elements had been identified. We showed that the HS mutation disrupted the binding of the transcription factor TFIID, the major component of the pre-initiation complex. We hypothesized that the mutation identified a candidate promoter element with a more widespread role in gene regulation. We examined 17 181 human promoters for the experimentally validated binding site, called the TFIID localization sequence (DLS) and found three times as many promoters containing DLS than TATA motifs. Mutational analyses of DLS sequences confirmed their functional significance, as did the addition of a DLS site to a minimal Sp1 promoter. Our results demonstrate that novel promoter elements can be identified on a genome-wide scale through observations of regulatory disruptions that cause human disease
The Carnegie Supernova Project: First Near-Infrared Hubble Diagram to z~0.7
The Carnegie Supernova Project (CSP) is designed to measure the luminosity
distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set
observational constraints on the dark energy contribution to the total energy
content of the Universe. The CSP differs from other projects to date in its
goal of providing an I-band {rest-frame} Hubble diagram. Here we present the
first results from near-infrared (NIR) observations obtained using the Magellan
Baade telescope for SNe Ia with 0.1 < z < 0.7. We combine these results with
those from the low-redshift CSP at z <0.1 (Folatelli et al. 2009). We present
light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia
and we compare these data to 21 new SNe Ia at low redshift. These data support
the conclusion that the expansion of the Universe is accelerating. When
combined with independent results from baryon acoustic oscillations (Eisenstein
et al. 2005), these data yield Omega_m = 0.27 +/- 0.0 (statistical), and
Omega_DE = 0.76 +/- 0.13 (statistical) +/- 0.09 (systematic), for the matter
and dark energy densities, respectively. If we parameterize the data in terms
of an equation of state, w, assume a flat geometry, and combine with baryon
acoustic oscillations, we find that w = -1.05 +/- 0.13 (statistical) +/- 0.09
(systematic). The largest source of systematic uncertainty on w arises from
uncertainties in the photometric calibration, signaling the importance of
securing more accurate photometric calibrations for future supernova cosmology
programs. Finally, we conclude that either the dust affecting the luminosities
of SNe Ia has a different extinction law (R_V = 1.8) than that in the Milky Way
(where R_V = 3.1), or that there is an additional intrinsic color term with
luminosity for SNe Ia independent of the decline rate.Comment: 44 pages, 23 figures, 9 tables; Accepted for publication in the
Astrophysical Journa
'To live and die [for] Dixie': Irish civilians and the Confederate States of America
Around 20,000 Irishmen served in the Confederate army in the Civil War. As a result, they left behind, in various Southern towns and cities, large numbers of friends, family, and community leaders. As with native-born Confederates, Irish civilian support was crucial to Irish participation in the Confederate military effort. Also, Irish civilians served in various supporting roles: in factories and hospitals, on railroads and diplomatic missions, and as boosters for the cause. They also, however, suffered in bombardments, sieges, and the blockade. Usually poorer than their native neighbours, they could not afford to become 'refugees' and move away from the centres of conflict. This essay, based on research from manuscript collections, contemporary newspapers, British Consular records, and Federal military records, will examine the role of Irish civilians in the Confederacy, and assess the role this activity had on their integration into Southern communities. It will also look at Irish civilians in the defeat of the Confederacy, particularly when they came under Union occupation. Initial research shows that Irish civilians were not as upset as other whites in the South about Union victory. They welcomed a return to normalcy, and often 'collaborated' with Union authorities. Also, Irish desertion rates in the Confederate army were particularly high, and I will attempt to gauge whether Irish civilians played a role in this. All of the research in this paper will thus be put in the context of the Drew Gilpin Faust/Gary Gallagher debate on the influence of the Confederate homefront on military performance. By studying the Irish civilian experience one can assess how strong the Confederate national experiment was. Was it a nation without a nationalism
The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing
The synthesis of ribosomal subunits in the nucleolus is a conserved, essential process that results in cytoplasmic ribosomes with precisely processed and folded rRNAs assembled with ribosomal proteins. It has been proposed, but never directly demonstrated, that the U3 small nucleolar RNA (snoRNA), a nucleolar component required for ribosome biogenesis, is a chaperone for pre-18S rRNA folding. To test this, we used in vivo chemical probing with dimethyl sulfate to detect changes in pre-rRNA structure upon genetic manipulation of the yeast, Saccharomyces cerevisiae. Based on changes in nucleotide reactivity, we found that the U3 snoRNA is indeed required for folding of the pre-18S rRNA. Furthermore, we detected a new essential base pairing interaction that is likely the initial anchor that recruits the U3 snoRNA to the pre-rRNA, is a prerequisite for the subsequent interactions, and is required for the small subunit processome formation. Substitution of the 5′-ETS nucleotides of the pre-rRNA involved in this initial base pairing interaction is lethal, but growth is restored when a complementary U3 snoRNA is expressed. The U3 snoRNP, via base pairing, and its associated proteins, are part of the required machinery that orchestrates the folding of pre-rRNA that results in the assembly of the small ribosomal subunit
- …