35 research outputs found

    Combinatorics on a family of reduced Kronecker coefficients

    Get PDF
    The reduced Kronecker coefficients are particular instances of Kronecker coefficients that contain enough information to recover them. In this notes we compute the generating function of a family of reduced Kronecker coefficients. We also gives its connection to the plane partitions, which allows us to check that this family satisfies the saturation conjecture for reduced Kronecker coefficients, and that they are weakly increasing. Thanks to its generating function we can describe our family by a quasipolynomial, specifying its degree and period.Comment: 8 page

    Combinatorial proof for a stability property of plethysm coefficients

    Get PDF
    Plethysm coefficients are important structural constants in the representation the- ory of the symmetric groups and general linear groups. Remarkably, some sequences of plethysm coefficients stabilize (they are ultimately constants). In this paper we give a new proof of such a stability property, proved by Brion with geometric representation theory techniques. Our new proof is purely combinatorial: we decompose plethysm coefficients as a alternating sum of terms counting integer points in poly- topes, and exhibit bijections between these sets of integer points.Ministerio de Ciencia e Innovación MTM2010–19336Junta de Andalucía FQM–333Junta de Andalucía P12–FQM–269

    Plane partitions and the combinatorics of some families of reduced Kronecker coefficients.

    Get PDF
    International audienceWe compute the generating function of some families of reduced Kronecker coefficients. We give a combi- natorial interpretation for these coefficients in terms of plane partitions. This unexpected relation allows us to check that the saturation hypothesis holds for the reduced Kronecker coefficients of our families. We also compute the quasipolynomial that govern these families, specifying the degree and period. Moving to the setting of Kronecker co- efficients, these results imply some observations related to the rate of growth experienced by the families of Kronecker coefficients associated to the reduced Kronecker coefficients already studied

    Stability properties of Plethysm: new approach with combinatorial proofs (Extended abstract)

    Get PDF
    International audiencePlethysm coefficients are important structural constants in the theory of symmetric functions and in the representations theory of symmetric groups and general linear groups. In 1950, Foulkes observed stability properties: some sequences of plethysm coefficients are eventually constants. Such stability properties were proven by Brion with geometric techniques and by Thibon and Carré by means of vertex operators. In this paper we present a newapproach to prove such stability properties. This new proofs are purely combinatorial and follow the same scheme. We decompose plethysm coefficients in terms of other plethysm coefficients (related to the complete homogeneous basis of symmetric functions). We show that these other plethysm coefficients count integer points in polytopes and we prove stability for them by exhibiting bijections between the corresponding sets of integer points of each polytope.Les coefficients du pléthysme sont des constantes de structure importantes de la théorie des fonctions symétriques, ainsi que de la théorie de la représentation des groupes symétriques et des groupes généraux linéaires. En 1950, Foulkes a observé pour ces coefficients de phénomènes de stabilité: certaines suites de coefficients du pléthysme sont stationnaires. De telles propriétés ont été démontrées par Brion, au moyen de techniques géométriques, et par Thibon et Carré, au moyen d’opérateurs vertex. Dans ce travail, nous présentons une nouvelle approche, purement combinatoire, pour démontrer des propriétés de stabilité de ce type. Nous décomposons les coefficients du pléthysme comme somme alternées de coefficients de pléthysme d’un autre type (liés à la base des fonctions symétriques sommes complètes), qui comptent les points entiers dans des polytopes. Nous démontrons la stabilité des suites de ces coefficients en exhibant des bijections entres les ensembles de points entiers des polytopes correspondants

    Toric geometry of path signature varieties

    Full text link
    In stochastic analysis, a standard method to study a path is to work with its signature. This is a sequence of tensors of different order that encode information of the path in a compact form. When the path varies, such signatures parametrize an algebraic variety in the tensor space. The study of these signature varieties builds a bridge between algebraic geometry and stochastics, and allows a fruitful exchange of techniques, ideas, conjectures and solutions. In this paper we study the signature varieties of two very different classes of paths. The class of rough paths is a natural extension of the class of piecewise smooth paths. It plays a central role in stochastics, and its signature variety is toric. The class of axis-parallel paths has a peculiar combinatoric flavour, and we prove that it is toric in many cases.Comment: Code for the computations is available at https://sites.google.com/view/l-colmenarejo/publications/cod

    Stability properties of Plethysm: new approach with combinatorial proofs (Extended abstract)

    Get PDF
    Plethysm coefficients are important structural constants in the theory of symmetric functions and in the representations theory of symmetric groups and general linear groups. In 1950, Foulkes observed stability properties: some sequences of plethysm coefficients are eventually constants. Such stability properties were proven by Brion with geometric techniques and by Thibon and Carré by means of vertex operators. In this paper we present a newapproach to prove such stability properties. This new proofs are purely combinatorial and follow the same scheme. We decompose plethysm coefficients in terms of other plethysm coefficients (related to the complete homogeneous basis of symmetric functions). We show that these other plethysm coefficients count integer points in polytopes and we prove stability for them by exhibiting bijections between the corresponding sets of integer points of each polytope
    corecore