3 research outputs found

    Simple battery armor to protect against gastrointestinal injury from accidental ingestion

    Get PDF
    Inadvertent battery ingestion in children and the associated morbidity and mortality results in thousands of emergency room visits every year. Given the risk for serious electrochemical burns within hours of ingestion, the current standard of care for the treatment of batteries in the esophagus is emergent endoscopic removal. Safety standards now regulate locked battery compartments in toys, which have resulted in a modest reduction in inadvertent battery ingestion; specifically, 3,461 ingestions were reported in 2009, and 3,366 in 2013. Aside from legislation, minimal technological development has taken place at the level of the battery to limit injury. We have constructed a waterproof, pressure-sensitive coating, harnessing a commercially available quantum tunneling composite. Quantum tunneling composite coated (QTCC) batteries are nonconductive in the low-pressure gastrointestinal environment yet conduct within the higher pressure of standard battery housings. Importantly, this coating technology enables most battery-operated equipment to be powered without modification. If these new batteries are swallowed, they limit the external electrolytic currents responsible for tissue injury. We demonstrate in a large-animal model a significant decrease in tissue injury with QTCC batteries compared with uncoated control batteries. In summary, here we describe a facile approach to increasing the safety of batteries by minimizing the risk for electrochemical burn if the batteries are inadvertently ingested, without the need for modification of most battery-powered devices.National Institutes of Health (U.S.) (Grant DE013023)National Institutes of Health (U.S.) (Grant EB000244)National Institutes of Health (U.S.) (Grant GM086433)National Institutes of Health (U.S.) (Grant T32 DK 7191-38

    Quick-release medical tape

    No full text
    Medical tape that provides secure fixation of life-sustaining and -monitoring devices with quick, easy, damage-free removal represents a longstanding unmet medical need in neonatal care. During removal of current medical tapes, crack propagation occurs at the adhesive–skin interface, which is also the interface responsible for device fixation. By designing quick-release medical tape to undergo crack propagation between the backing and adhesive layers, we decouple removal and device fixation, enabling dual functionality. We created an ordered adhesive/antiadhesive composite intermediary layer between the medical tape backing and adhesive for which we achieve tunable peel removal force, while maintaining high shear adhesion to secure medical devices. We elucidate the relationship between the spatial ordering of adhesive and antiadhesive regions to create a fully tunable system that achieves strong device fixation and quick, easy, damage-free device removal. We also described ways of neutralizing the residual adhesive on the skin and have observed that thick continuous films of adhesive are easier to remove than the thin islands associated with residual adhesive left by current medical tapes.Philips Children’s Medical Ventures (Institute for Pediatric Innovation)National Institutes of Health (U.S.) (Grant DE013023)National Institutes of Health (U.S.) (Grant GM086433
    corecore