42 research outputs found

    Diurnal cycle of precipitable water vapor over Spain

    Get PDF
    Knowledge of the diurnal cycle of precipitable water vapor (PWV) is very limited owing to the lack of data with sufficient temporal resolution. Currently, GPS receivers have proven to be a suitable technique to determine PWV diurnal variations. In this study, the annual and seasonal diurnal cycles of PWV have been obtained from GPS data for 10 locations over Spain. The minimum value of PWV is reached approximately at the same time at all the stations, ∼0430–0530 UTC, whereas the maximum is reached in the second half of the day, but with a larger dispersion of its occurrence between stations. The annual sub-daily variability ranges from 0.41 to 1.35 mm (3–7%). The highest values are recorded at the stations on the Mediterranean coast, with a doubling of the values of the stations on the Atlantic coast or inland. The winter cycle is quite similar at all locations, whereas in summer local effects are felt strongly, making the diurnal cycle quite different between stations. The PWV mean diurnal cycle is strongest in summer and weakest in spring, with a sub-daily variability of 1.34 and 0.66 mm respectively. Harmonic analysis shows that the first two harmonics can explain 97% of the variance. The diurnal (24 h) harmonic explains 85% of the variance, has mean amplitude of 0.40 mm, and the peak time is from early afternoon to evening. The semi-diurnal (12 h) harmonic is weaker, with an amplitude of 0.13 mm, and peak time between 0400 and 1000 UTC. The diurnal cycle of temperature alone would be a proxy for PWV cycle during the night, but not during the daytime. The breeze regime is the main factor responsible for the phase lag between PWV and temperature cycles during daytime. No clear correlation between the daily cycle of precipitation and PWV has been found

    Asian dust events of April 1998

    Get PDF
    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UNI cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 mug/m(3) with local peaks \u3e 100 mug/m(3). The dust mass mean diameter was 2-3 mum, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative analysis for improved air quality and disaster management

    Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    Get PDF
    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.United States. Dept. of Energy. Atmospheric System Research Program (Contract DE-AC06-76RLO 1830)United States. National Oceanic and Atmospheric AdministrationUnited States. National Aeronautics and Space Administration. HQ Science Mission Directorate Radiation Sciences ProgramUnited States. National Aeronautics and Space Administration. CALIPSO ProgramUnited States. Dept. of Energy. Atmospheric Radiation Measurement Program (Interagency Agreement No. DE-AI02-05ER63985
    corecore