392 research outputs found

    Temperature dependent photoluminescence of single CdS nanowires

    Full text link
    Temperature dependent photoluminescence (PL) is used to study the electronic properties of single CdS nanowires. At low temperatures, both near-band edge (NBE) photoluminescence (PL) and spatially-localized defect-related PL are observed in many nanowires. The intensity of the defect states is a sensitive tool to judge the character and structural uniformity of nanowires. As the temperature is raised, the defect states rapidly quench at varying rates leaving the NBE PL which dominates up to room temperature. All PL lines from nanowires follow closely the temperature-dependent band edge, similar to that observed in bulk CdS.Comment: 11 pages, 4 figure

    Low temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires

    Full text link
    Time-resolved photoluminescence (PL) and micro-PL imaging were used to study single CdS nanowires at 10 K. The low-temperature PL of all CdS nanowires exhibit spectral features near energies associated with free and bound exciton transitions, with the transition energies and emission intensities varying along the length of the nanowire. In addition, several nanowires show spatially localized PL at lower energies which are associated with morphological irregularities in the nanowires. Time-resolved PL measurements indicate that exciton recombination in all CdS nanowires is dominated by non-radiative recombination at the surface of the nanowires.Comment: 9 pages, 3 figures, to be published in Applied Physics Letter

    Langevin-like giant magnetoresistance in Co-Cu superlattices

    Get PDF
    We present evidence for a new type of giant magnetoresistance in (111) cobalt-copper superlattices with atomically smooth interfaces. We propose that the lowered dimensionality of the structure leads to an enhancement of the scattering of conduction electrons from paramagnetic interfaces obeying a Langevin-like saturation at very high fields, well beyond the switching field of the Co layers. The findings help to explain similarities in magnetotransport behavior with recently reported granular systems as well as differences with antiferromagnetically coupled multilayers

    Low temperature properties of a quantum particle coupled to dissipative environments

    Full text link
    We study the dynamics of a quantum particle coupled to dissipative (ohmic) environments, such as an electron liquid. For some choices of couplings, the properties of the particle can be described in terms of an effective mass. A particular case is the three dimensional dirty electron liquid. In other environments, like the one described by the Caldeira-Leggett model, the effective mass diverges at low temperatures, and quantum effects are strongly suppressed. For interactions within this class, arbitrarily weak potentials lead to localized solutions. Particles bound to external potentials, or moving in closed orbits, can show a first order transition, between strongly and weakly localized regimes.Comment: 10 page
    • …
    corecore