304 research outputs found

    Early blood pressure, antihypotensive therapy and outcomes at 18–22 months’ corrected age in extremely preterm infants

    Get PDF
    Investigate relationships between early blood pressure (BP) changes, receipt of anti-hypotensive therapy, and 18 – 22 month corrected age (CA) outcomes for extremely preterm infants

    Early Blood Gas Predictors of Bronchopulmonary Dysplasia in Extremely Low Gestational Age Newborns

    Get PDF
    Aim. To determine among infants born before the 28th week of gestation to what extent blood gas abnormalities during the first three postnatal days provide information about the risk of bronchopulmonary dysplasia (BPD). Methods. We studied the association of extreme quartiles of blood gas measurements (hypoxemia, hyperoxemia, hypocapnea, and hypercapnea) in the first three postnatal days, with bronchopulmonary dysplasia, among 906 newborns, using multivariable models adjusting for potential confounders. We approximated NIH criteria by classifying severity of BPD on the basis of the receipt of any O 2 on postnatal day 28 and at 36 weeks PMA and assisted ventilation. Results. In models that did not adjust for ventilation, hypoxemia was associated with increased risk of severe BPD and very severe BPD, while infants who had hypercapnea were at increased risk of very severe BPD only. In contrast, infants who had hypocapnea were at reduced risk of severe BPD. Including ventilation for 14 or more days eliminated the associations with hypoxemia and with hypercapnea and made the decreased risk of very severe BPD statistically significant. Conclusions. Among ELGANs, recurrent/persistent blood gas abnormalities in the first three postnatal days convey information about the risk of severe and very severe BPD

    Early postnatal hypotension and developmental delay at 24 months of age among extremely low gestational age newborns

    Get PDF
    To evaluate, in extremely low gestational age newborns (ELGANs), relationships between indicators of hypotension during the first 24 postnatal hours and developmental delay at 24 months of age

    Early postnatal hypotension is not associated with indicators of white matter damage or cerebral palsy in extremely low gestational age newborns

    Get PDF
    ObjectivesTo evaluate, in extremely low gestational age newborns (ELGANs), relationships between indicators of early postnatal hypotension and cranial ultrasound indicators of cerebral white matter damage imaged in the nursery and cerebral palsy diagnoses at 24 month follow-up.MethodsThe 1041 infants in this prospective study were born at < 28 weeks gestation, were assessed for 3 indicators of hypotension in the first 24 postnatal hours, had at least one set of protocol cranial ultrasound scans, and were evaluated with a structured neurologic exam at 24 months corrected age. Indicators of hypotension included: 1) lowest mean arterial pressure (MAP) in the lowest quartile for gestational age; 2) treatment with a vasopressor; and 3) blood pressure lability, defined as the upper quartile of the difference between each infant’s lowest and highest MAP. Outcomes included indicators of cerebral white matter damage, i.e. moderate/severe ventriculomegaly or an echolucent lesion on cranial ultrasound, and cerebral palsy diagnoses at 24 months gestation. Logistic regression was used to evaluate relationships among hypotension indicators and outcomes, adjusting for potential confounders.ResultsTwenty-one percent of surviving infants had a lowest blood pressure in the lowest quartile for gestational age, 24% were treated with vasopressors, and 24% had labile blood pressure. Among infants with these hypotension indicators, 10% percent developed ventriculomegaly and 7% developed an echolucent lesion. At 24-months follow-up, 6% had developed quadriparesis, 4% diparesis, and 2% hemiparesis. After adjusting for confounders, we found no association between indicators of hypotension, and indicators of cerebral white matter damage or a cerebral palsy diagnosis.ConclusionsThe absence of an association between indicators of hypotension and cerebral white matter damage and or cerebral palsy suggests that early hypotension may not be important in the pathogenesis of brain injury in ELGANs

    Evolving blood pressure dynamics for extremely preterm infants

    Get PDF
    ObjectiveTo examine changes in arterial blood pressure (ABP) after birth in extremely preterm infants.Study DesignProspective observational study of infants 230/7 – 266/7 weeks gestational age (GA). Antihypotensive therapy use and ABP measurements were recorded for the first 24 hours.ResultsA cohort of 367 infants had 18,709 ABP measurements recorded. ABP decreased for the first three hours, reached a nadir at 4 – 5 hours, then increased at an average rate of 0.2 mmHg / hour. The rise in ABP from hour 4 – 24 was similar for untreated infants (n=164) and infants given any antihypotensive therapy (n=203), a fluid bolus (n=135), or dopamine (n=92). GA specific trends were similar. ABP tended to be lower as GA decreased, but varied widely at each GA.ConclusionArterial blood pressure increased spontaneously over the first 24 postnatal hours for extremely preterm infants. The rate of rise in ABP did not change with antihypotensive therapy

    Feasibility Study of Early Blood Pressure Management in Extremely Preterm Infants

    Get PDF
    To assess the feasibility of a randomized placebo controlled trial (RCT) of blood pressure (BP) management for extremely preterm infants

    Effect of Catheter Dwell Time on Risk of Central Line-Associated Bloodstream Infection in Infants

    Get PDF
    Central venous catheters in the NICU are associated with significant morbidity and mortality because of the risk of central line–associated bloodstream infections (CLABSIs). The purpose of this study was to determine the effect of catheter dwell time on risk of CLABSI

    Neonatal cerebrovascular autoregulation.

    Get PDF
    Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes
    • …
    corecore