33 research outputs found
Characterisation of the porous structure of Gilsocarbon graphite using pycnometry, cyclic porosimetry and void-network modeling
file: :C:/pdf/1-s2.0-S000862231400164X-main.pdf:pdfThe cores of the fourteen Advanced Gas-cooled nuclear Reactors (AGRs) within the UK comprise Gilsocarbon graphite, a manufactured material surrounded predominantly by CO2 at high pressure and temperature to provide heat exchange. The intense ionising radiation within the reactors causes radiolytic oxidation, and the resulting mass loss is a primary factor in determining reactor lifetime. The void structure of the porous Gilsocarbon graphite affects the permeability and diffusion of the carbon dioxide, and the sites of oxidation. To model this void structure, the porosities and densities of ten virgin Gilsocarbon graphite samples have been measured by powder and helium pycnometry. For comparison, results are also presented for highly ordered pyrolytic graphite (HOPG), and a fine-grained Ringsdorff graphite. Samples have been examined at a range of magnifications by electron microscopy. Total porosities and percolation characteristics have been measured by standard and cyclic mercury porosimetry up to an applied mercury pressure of 400MPa. Inverse modelling of the cyclic intrusion curves produces simulated void structures with characteristics which closely match those of experiment. Void size distributions of the structures are presented, together with much Supplementary Information. The simulated void networks provide the bases for future simulations of the radiolytic oxidation process itself
Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil
Measurements have been made of the effect of compaction on water retention, saturated hydraulic conductivity, and porosity of two English soils: North Wyke (NW) grassland clay topsoil and Broadbalk silty topsoil, fertilized inorganically (PKMg) or with farmyard manure (FYM). As expected, the FYM topsoil had greater porosity and greater water retention than PKMg topsoil, and the NW clay topsoil retained more water at each matric potential than the silty topsoils. Compaction had a clear effect on water retention at matric potentials wetter than -10 kPa for the PKMg and FYM soils, corresponding to voids greater than 30 mu m cylindrical diameter, whereas smaller voids appeared to be unaffected. The Pore-Cor void network model has been improved by including a Euler beta distribution to describe the sizes of the narrow interconnections, termed throats. The model revealed a change from bimodal to unimodal throat size distributions on compaction, as well as a reduction in sizes overall. It also matched the water retention curves more closely than van Genuchten fits and correctly predicted changes in saturated hydraulic conductivity better than those predicted by a prior statistical approach. However, the changes in hydraulic conductivity were masked by the stochastic variability of the model. Also, an artifact of the model, namely its inability to pack small features close together, caused incorrect increases in pore sizes on compaction. These deficiencies in the model demonstrate the need for an explicitly dual porous network model to account for the effects of compaction in soil
Comparing Open Radical Cystectomy and Robot-assisted Laparoscopic Radical Cystectomy: A Randomized Clinical Trial
Background: Open radical cystectomy (ORC) and urinary diversion in patients with bladder cancer (BCa) are associated with significant perioperative complication risk. Objective: To compare perioperative complications between robot-assisted radical cystectomy (RARC) and ORC techniques. Design, setting, and participants: A prospective randomized controlled trial was conducted during 2010 and 2013 in BCa patients scheduled for definitive treatment by radical cystectomy (RC), pelvic lymph node dissection (PLND), and urinary diversion. Patients were randomized to ORC/PLND or RARC/PLND, both with open urinary diversion. Patients were followed for 90 d postoperatively. Intervention: Standard ORC or RARC with PLND; all urinary diversions were performed via an open approach. Outcome measurements and statistical analysis: Primary outcomes were overall 90-d grade 2-5 complications defined by a modified Clavien system. Secondary outcomes included comparison of high-grade complications, estimated blood loss, operative time, pathologic outcomes, 3-and 6-mo patient-reported quality-of-life (QOL) outcomes, and total operative room and inpatient costs. Differences in binary outcomes were assessed with the chi-square test, with differences in continuous outcomes assessed by analysis of covariance with randomization group as covariate and, for QOL end points, baseline score. Results and limitations: The trial enrolled 124 patients, of whom 118 were randomized and underwent RC/PLND. Sixty were randomized to RARC and 58 to ORC. At 90 d, grade 2-5 complications were observed in 62% and 66% of RARC and ORC patients, respectively (95% confidence interval for difference, -21% to -13%; p = 0.7). The similar rates of grade 2-5 complications at our mandated interim analysis met futility criteria; thus, early closure of the trial occurred. The RARC group had lower mean intraoperative blood loss (p = 0.027) but significantly longer operative time than the ORC group (p \u3c 0.001). Pathologic variables including positive surgical margins and lymph node yields were similar. Mean hospital stay was 8 d in both arms (standard deviation, 3 and 5 d, respectively; p = 0.5). Three-and 6-mo QOL outcomes were similar between arms. Cost analysis demonstrated an advantage to ORC compared with RARC. A limitation is the setting at a single high-volume, referral center; our findings may not be generalizable to all settings. Conclusions: This trial failed to identify a large advantage for robot-assisted techniques over standard open surgery for patients undergoing RC/PLND and urinary diversion. Similar 90-d complication rates, hospital stay, pathologic outcomes, and 3-and 6-mo QOL outcomes were observed regardless of surgical technique. Patient summary: Of 118 patients with bladder cancer who underwent radical cystectomy, pelvic lymph node dissection, and urinary diversion, half were randomized to open surgery and half to robot-assisted laparoscopic surgery. We compared the rate of complications within 90 d after surgery for the open group versus the robotic group and found no significant difference between the two groups. Trial Registration: ClinicalTrials. gov identifier NCT01076387, www.clinicaltrials.gov. (C) 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved
Improved Interpretation of Mercury Intrusion and Soil Water Retention Percolation Characteristics by Inverse Modelling and Void Cluster Analysis
This work addresses two continuing fallacies in the interpretation of percolation characteristics of porous solids. The first is that the first derivative (slope) of the intrusion characteristic of the non-wetting fluid or drainage characteristic of the wetting fluid corresponds to the void size distribution, and the second is that the sizes of all voids can be measured. The fallacies are illustrated with the aid of the PoreXpertÂź inversemodelling package.Anewvoid
analysis method is then described, which is an add-on to the inverse modelling package and addresses the second fallacy. It is applied to three widely contrasting and challenging porous media. The first comprises two fine-grain graphites for use in the next-generation nuclear reactors. Their larger void sizes were measured by mercury intrusion, and the smallest by
using a grand canonical Monte Carlo interpretation of surface area measurement down to nanometre scale. The second application is to the mercury intrusion of a series of mixtures of ground calcium carbonate with powdered microporous calcium carbonate known as functionalised calcium carbonate (FCC). The third is the water retention/drainage characteristic of a soil sample which undergoes naturally occurring hydrophilic/hydrophobic transitions. The first-derivative approximation is shown to be reasonable in the interpretation of the mercury intrusion porosimetry of the two graphites, which differ only at low mercury intrusion pressures, but false for FCC and the transiently hydrophobic soil. The findings are supported
by other experimental characterisations, in particular electron and atomic force microscopy
Mechanism of adsorption of actives onto microporous functionalised calcium carbonate (FCC)
Microporous âfunctionalisedâ calcium carbonate (FCC) has potential for use as a carrier for the controlled release of âactivesâ, by permeation and diffusion. We have investigated the nature of the FCC surface and the mechanism of adsorption of two typical actives, namely the anti-inflammatory drug aspirin and the flavour compound vanillin, from chloroform and aqueous ethanolic solutions. There is indirect evidence from the quantitative perturbation of TĂłth isotherms that their adsorption is hindered by a stagnant diffusion layer of water trapped in the micro-porosity of the FCC. To complement previous studies of the surface of FCC, it was also tested with the cationic probe benzyltrimethylammonium bromide and the anionic probe sodium 2-naphthalenesulphonate. Experimental procedures were validated by comparison with adsorption onto ground calcium carbonate and high surface area talc
A multi-technique experimental and modelling study of the porous structure of IG-110 and IG-430 nuclear graphite
© 2017 Elsevier Ltd In nuclear graphite, the wide range of void sizes precludes a full characterisation of pore volume by means of a single technique. A novel multi-technique approach, consisting of pycnometry, low pressure gas adsorption and mercury porosimetry is presented. The approach is validated for two nuclear-grade graphites designed for use in Generation IV nuclear reactors, namely IG-110 and IG-430. Damage and deformation caused to the structure of the graphite by mercury intrusion is estimated by consecutive intrusion experiments. The damage is assumed to be caused by the highest applied pressures of mercury. It is compensated by substituting that part of the percolation curve with one derived from adsorption measurements. The various measurements are inverse modelled in a way which intelligently bridges the size gap between the techniques. The resulting complete non-hierarchical pore structure covers sizes spanning 4 orders of magnitude. The new approach resolves the long standing issues associated with performing porosimetry on graphitic samples, and fills the gap in knowledge for the assessment of multilevel porosity within graphite. As an example of the possible applications of the resulting void network structure, we calculated the air network flow capacity, related to absolute permeability, for the two graphite samples