3,052 research outputs found

    Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems

    Full text link
    We propose a subspace constrained precoding scheme that exploits the spatial channel correlation structure in massive MIMO cellular systems to fully unleash the tremendous gain provided by massive antenna array with reduced channel state information (CSI) signaling overhead. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace control matrix. The inner precoder is adaptive to the local CSI at each BS for spatial multiplexing gain. The Tx subspace control is adaptive to the channel statistics for inter-cell interference mitigation and Quality of Service (QoS) optimization. Specifically, the Tx subspace control is formulated as a QoS optimization problem which involves an SINR chance constraint where the probability of each user's SINR not satisfying a service requirement must not exceed a given outage probability. Such chance constraint cannot be handled by the existing methods due to the two stage precoding structure. To tackle this, we propose a bi-convex approximation approach, which consists of three key ingredients: random matrix theory, chance constrained optimization and semidefinite relaxation. Then we propose an efficient algorithm to find the optimal solution of the resulting bi-convex approximation problem. Simulations show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication

    Distributed Compressive CSIT Estimation and Feedback for FDD Multi-user Massive MIMO Systems

    Full text link
    To fully utilize the spatial multiplexing gains or array gains of massive MIMO, the channel state information must be obtained at the transmitter side (CSIT). However, conventional CSIT estimation approaches are not suitable for FDD massive MIMO systems because of the overwhelming training and feedback overhead. In this paper, we consider multi-user massive MIMO systems and deploy the compressive sensing (CS) technique to reduce the training as well as the feedback overhead in the CSIT estimation. The multi-user massive MIMO systems exhibits a hidden joint sparsity structure in the user channel matrices due to the shared local scatterers in the physical propagation environment. As such, instead of naively applying the conventional CS to the CSIT estimation, we propose a distributed compressive CSIT estimation scheme so that the compressed measurements are observed at the users locally, while the CSIT recovery is performed at the base station jointly. A joint orthogonal matching pursuit recovery algorithm is proposed to perform the CSIT recovery, with the capability of exploiting the hidden joint sparsity in the user channel matrices. We analyze the obtained CSIT quality in terms of the normalized mean absolute error, and through the closed-form expressions, we obtain simple insights into how the joint channel sparsity can be exploited to improve the CSIT recovery performance.Comment: 16 double-column pages, accepted for publication in IEEE Transactions on Signal Processin

    Decentralized Delay Optimal Control for Interference Networks with Limited Renewable Energy Storage

    Full text link
    In this paper, we consider delay minimization for interference networks with renewable energy source, where the transmission power of a node comes from both the conventional utility power (AC power) and the renewable energy source. We assume the transmission power of each node is a function of the local channel state, local data queue state and local energy queue state only. In turn, we consider two delay optimization formulations, namely the decentralized partially observable Markov decision process (DEC-POMDP) and Non-cooperative partially observable stochastic game (POSG). In DEC-POMDP formulation, we derive a decentralized online learning algorithm to determine the control actions and Lagrangian multipliers (LMs) simultaneously, based on the policy gradient approach. Under some mild technical conditions, the proposed decentralized policy gradient algorithm converges almost surely to a local optimal solution. On the other hand, in the non-cooperative POSG formulation, the transmitter nodes are non-cooperative. We extend the decentralized policy gradient solution and establish the technical proof for almost-sure convergence of the learning algorithms. In both cases, the solutions are very robust to model variations. Finally, the delay performance of the proposed solutions are compared with conventional baseline schemes for interference networks and it is illustrated that substantial delay performance gain and energy savings can be achieved
    • …
    corecore