3,052 research outputs found
Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems
We propose a subspace constrained precoding scheme that exploits the spatial
channel correlation structure in massive MIMO cellular systems to fully unleash
the tremendous gain provided by massive antenna array with reduced channel
state information (CSI) signaling overhead. The MIMO precoder at each base
station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace
control matrix. The inner precoder is adaptive to the local CSI at each BS for
spatial multiplexing gain. The Tx subspace control is adaptive to the channel
statistics for inter-cell interference mitigation and Quality of Service (QoS)
optimization. Specifically, the Tx subspace control is formulated as a QoS
optimization problem which involves an SINR chance constraint where the
probability of each user's SINR not satisfying a service requirement must not
exceed a given outage probability. Such chance constraint cannot be handled by
the existing methods due to the two stage precoding structure. To tackle this,
we propose a bi-convex approximation approach, which consists of three key
ingredients: random matrix theory, chance constrained optimization and
semidefinite relaxation. Then we propose an efficient algorithm to find the
optimal solution of the resulting bi-convex approximation problem. Simulations
show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication
Distributed Compressive CSIT Estimation and Feedback for FDD Multi-user Massive MIMO Systems
To fully utilize the spatial multiplexing gains or array gains of massive
MIMO, the channel state information must be obtained at the transmitter side
(CSIT). However, conventional CSIT estimation approaches are not suitable for
FDD massive MIMO systems because of the overwhelming training and feedback
overhead. In this paper, we consider multi-user massive MIMO systems and deploy
the compressive sensing (CS) technique to reduce the training as well as the
feedback overhead in the CSIT estimation. The multi-user massive MIMO systems
exhibits a hidden joint sparsity structure in the user channel matrices due to
the shared local scatterers in the physical propagation environment. As such,
instead of naively applying the conventional CS to the CSIT estimation, we
propose a distributed compressive CSIT estimation scheme so that the compressed
measurements are observed at the users locally, while the CSIT recovery is
performed at the base station jointly. A joint orthogonal matching pursuit
recovery algorithm is proposed to perform the CSIT recovery, with the
capability of exploiting the hidden joint sparsity in the user channel
matrices. We analyze the obtained CSIT quality in terms of the normalized mean
absolute error, and through the closed-form expressions, we obtain simple
insights into how the joint channel sparsity can be exploited to improve the
CSIT recovery performance.Comment: 16 double-column pages, accepted for publication in IEEE Transactions
on Signal Processin
Decentralized Delay Optimal Control for Interference Networks with Limited Renewable Energy Storage
In this paper, we consider delay minimization for interference networks with
renewable energy source, where the transmission power of a node comes from both
the conventional utility power (AC power) and the renewable energy source. We
assume the transmission power of each node is a function of the local channel
state, local data queue state and local energy queue state only. In turn, we
consider two delay optimization formulations, namely the decentralized
partially observable Markov decision process (DEC-POMDP) and Non-cooperative
partially observable stochastic game (POSG). In DEC-POMDP formulation, we
derive a decentralized online learning algorithm to determine the control
actions and Lagrangian multipliers (LMs) simultaneously, based on the policy
gradient approach. Under some mild technical conditions, the proposed
decentralized policy gradient algorithm converges almost surely to a local
optimal solution. On the other hand, in the non-cooperative POSG formulation,
the transmitter nodes are non-cooperative. We extend the decentralized policy
gradient solution and establish the technical proof for almost-sure convergence
of the learning algorithms. In both cases, the solutions are very robust to
model variations. Finally, the delay performance of the proposed solutions are
compared with conventional baseline schemes for interference networks and it is
illustrated that substantial delay performance gain and energy savings can be
achieved
- …