8 research outputs found

    Prevalence and characterization of hybrid blaCTX-M among Escherichia coli isolates from livestock and other animals

    Get PDF
    This study investigated 248 extended-spectrum β-lactamase-producing Escherichia coli isolates from 2012 to 2013 for hybrid blaCTX-M genes. blaCTX-M genes were detected in 228 isolates of which 14 isolates were hybrid blaCTX-M positive (6 blaCTX-M-123, 6 blaCTX-M-64, and 2 blaCTX-M-132). The 14 hybrid blaCTX-M–carrying isolates (8 from chickens, 2 each from pigs and cattle, 1 each from dog and rodent) were genetically diverse. All but 2 hybrid blaCTX-M were carried on IncI1 (5 blaCTX-M-123) and IncI2 (6 blaCTX-M-64 and one blaCTX-M-132) plasmids. Our IncI1 and IncI2 plasmids had pHNAH4-1–like and pHN1122-1–like restriction fragment length polymorphism patterns, respectively. Genetic relatedness of the plasmids to pHNAH4-1 and pHN1122-1 were confirmed by complete sequencing of 3 plasmids, pCTXM123_C0996, pCTXM64_C0967, and pCTXM132_P0421. Plasmids closely related to pHNAH4-1 and pHN1122-1 and carrying different blaCTX-M alleles have been reported from multiple geographic areas in China previously. The findings highlighted the wide dissemination of hybrid blaCTX-M variants in different parts of China.postprin

    CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant

    Get PDF
    Regardless of the route of transmission, R5-tropic HIV-1 predominates early in infection, rendering C-C chemokine receptor type 5 (CCR5) antagonists as attractive agents not only for antiretroviral therapy but also for prevention. Here, we report the specificity, potency, and underlying mechanism of action of a novel small molecule CCR5 antagonist, TD-0680. TD-0680 displayed the greatest potency against a diverse group of R5-tropic HIV-1 and SIV strains when compared with its prodrug, TD-0232, the Food and Drug Administration-approved CCR5 antagonist Maraviroc, and TAK-779, with EC 50 values in the subnanomolar range (0.09-2.29 nM). Importantly, TD-0680 was equally potent at blocking envelope-mediated cell-cell fusion and cell-mediated viral transmission as well as the replication of a TAK-779/Maraviroc-resistant HIV-1 variant. Interestingly, TD-0232 and TD-0680 functioned differently despite binding to a similar transmembrane pocket of CCR5. Site-directed mutagenesis, drug combination, and antibody blocking assays identified a novel mechanism of action of TD-0680. In addition to binding to the transmembrane pocket, the unique exo configuration of this molecule protrudes and sterically blocks access to the extracellular loop 2 (ECL2) region of CCR5, thereby interrupting the interaction between virus and its co-receptor more effectively. This mechanism of action was supported by the observations of similar TD-0680 potency against CD4-dependent and -independent SIV strains and by molecular docking analysis using a CCR5 model. TD-0680, therefore, merits development as an anti-HIV-1 agent for therapeutic purposes and/or as a topical microbicide for the prevention of sexual transmission of R5-tropic HIV-1. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.link_to_OA_fulltex

    Computational identification of protein binding sites on RNAs using high-throughput RNA structure-probing data

    No full text
    MOTIVATION: High-throughput sequencing has been used to probe RNA structures, by treating RNAs with reagents that preferentially cleave or mark certain nucleotides according to their local structures, followed by sequencing of the resulting fragments. The data produced contain valuable information for studying various RNA properties. RESULTS: We developed methods for statistically modeling these structure-probing data and extracting structural features from them. We show that the extracted features can be used to predict RNA 'zipcodes' in yeast, regions bound by the She complex in asymmetric localization. The prediction accuracy was better than using raw RNA probing data or sequence features. We further demonstrate the use of the extracted features in identifying binding sites of RNA binding proteins from whole-transcriptome global photoactivatable-ribonucleoside-enhanced cross-linking and immunopurification (gPAR-CLIP) data

    Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis

    No full text
    Objectives: Ninety-six percent of rifampicin resistance in Mycobacterium tuberculosis was shown to be associated with mutations inside the 81 bp rifampicin resistance-determining region (RRDR) located in the centre of the rpoB gene. The detection of rifampicin resistance by targeting the RRDR failed to match with a resistant phenotype in 4% of all cases. Our study aims to identify the mutations outside the RRDR that are associated with rifampicin resistance in M. tuberculosis. Methods and results: Among 50 rifampicin-resistant and 20 rifampicin-susceptible clinical isolates of M. tuberculosis, 2 of the rifampicin-resistant isolates did not harbour any known mutations in the RRDR. Sequencing analysis of the whole rpoB gene identified two rare mutations, V146F and I572F. A molecular structure model based on Thermus thermophilus RpoB revealed that both these substituted amino acids are located in close proximity to the rifampicin-binding pocket of the β-subunit. Substitutions of simple amino acids for bulky ones are likely to affect the protein-drug interaction. Cloning and transformation of the mutated rpoB gene into wild-type Mycobacterium smegmatis and M. tuberculosis successfully elevated the MIC of rifampicin and conferred the rifampicin resistance phenotype. Conclusions: Our study showed that amino acid positions 146 and 572 are associated with rifampicin resistance in M. tuberculosis in addition to the RRDR. Molecular assays for identifying rifampicin-resistant M. tuberculosis might be improved in terms of accuracy by including these two positions. © The Author 2011. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.link_to_OA_fulltex

    A novel mutation, D404N, in the connection subdomain of reverse transcriptase of HIV-1 CRF08_BC subtype confers cross-resistance to NNRTIs

    No full text
    OBJECTIVES: Growing evidence suggests that mutations in the connection domain of the HIV-1 reverse transcriptase (RT) can contribute to viral resistance to RT inhibitors. This work was designed to determine the effects of a novel mutation, D404N, in the connection subdomain of RT of HIV-1 CRF08_BC subtype on drug resistance, viral replication capacity (RC) and RT activity. METHODS: Mutation D404N, alone or together with the other reported mutations, was introduced into an HIV-1 CRF08_BC subtype infectious clone by site-directed mutagenesis. Viral susceptibility to nine RT inhibitors, viral RC and the DNA polymerase activity of viral RT of the constructed virus mutants were investigated. A modelling study using the server SWISS-MODEL was conducted to explore the possible structure-related drug resistance mechanism of the mutation D404N. RESULTS: Single mutations D404N and H221Y conferred low-level resistance to nevirapine, efavirenz, rilpivirine and zidovudine. Double mutations Y181C/D404N and Y181C/H221Y significantly reduced susceptibility to NNRTIs. The most pronounced resistance to NNRTIs was observed with the triple mutation Y181C/D404N/H221Y. Virus containing D404N as the only mutation displayed ∼50% RC compared with the WT virus. The modelling study suggested that the D404N mutation might abolish the hydrogen bonds between residues 404 and K30 in p51 or K431 in p66, leading to impaired RT subunit structure and enhanced drug resistance. CONCLUSIONS: These results indicate that D404N is a novel NNRTI-associated mutation in the HIV-1 subtype CRF08_BC and provides information valuable for the monitoring of clinical RTI resistance

    Prediction from Weeks to Decades

    No full text
    This white paper is a synthesis of several recent workshops, reports and published literature on monthly to decadal climate prediction. The intent is to document: (i) the scientific basis for prediction from weeks to decades; (ii) current capabilities; and (iii) outstanding challenges. In terms of the scientific basis we described the various sources of predictability, e.g., the Madden Jullian Ocillation (MJO); Sudden Stratospheric Warmings; Annular Modes; El Niño and the Southern Oscillation (ENSO); Indian Ocean Dipole (IOD); Atlantic “Niño;” Atlantic gradient pattern; snow cover anomalies, soil moisture anomalies; sea-ice anomalies; Pacific Decadal Variability (PDV); Atlantic Multi-Decadal Variability (AMV); trend among others. Some of the outstanding challenges include how to evaluate and validate prediction systems, how to improve models and prediction systems (e.g., observations, data assimilation systems, ensemble strategies), the development of seamless prediction systems
    corecore