1,819 research outputs found

    The dynamic consequences of invasion: negative plant-soil feedbacks on natives increase ver the time course of invasion

    Get PDF
    *a) Background/Questions/Methods*
Exotic species can negatively impact native community members, directly through interference competition, or indirectly by altering interactions between native species and other species such as pathogens and mutualists. Soil microbial communities have been shown to respond to invasive species, yet are relatively stable and may take time to respond to perturbations. For this reason, microbe-mediated effects of invasives on natives may take time to develop and may change throughout the invasion process. Few studies have investigated how species interactions between natives and exotics change during invasions.

_Acer platanoides_ was introduced into the US from Europe in 1756 and has since invaded intact forests, lowering understory diversity and inhibiting native tree species regeneration. We hypothesize that _A. platanoides_ invasion will decrease seedling survival in the native _A. saccharum_ by changing the soil microbial community through plant-soil feedbacks (PSF), and this relationship will intensify over the course of an invasion. We collected soil samples from beneath the canopies of both species co-occurring in Michigan forests that had been invaded by _A. platanoides_ for varying time periods. In the greenhouse, we inoculated seedlings of both species with the microbial communities to determine how the soil community affects seedling survival and growth.

*b) Results/Conclusion*
The microbe-mediated negative effects of _A. platanoides_ on survival of the native congener _A. saccharum_ increased with increasing invasion age (negative correlation between invasion age and _A. saccharum_ survival; r = -0.806, R^2^ = 0.65, p = 0.032). This result was not related to _A. platanoides_ density, suggesting that age of invasion drives this pattern. Contrastingly, invasion age did not significantly influence survival of _A. platanoides_ seedlings, indicating that _A. platanoides’_ PSF impacts native species but not on conspecific regeneration. Overall, _A. platanoides_ seedlings had increased growth (more and larger leaves) when grown in soil communities collected from the native _A. saccharum_, but _A. saccharum_ seedlings had reduced growth when grown in conspecific soil (p = 0.044). These results suggest that invasive species may have increased performance in exotic ranges by their ability to modify the soil microbial community in a manner that suppresses the growth of native species.

We show the microbial community cultivated by an invader alters the performance of a native plant species, and this effect increases over the course of an invasion. In future work, we plan to identify changes in microbial community composition and the relative abundances of mutualists versus antagonists in response to invasion to identify potential mechanisms

    Ybcl of uropathogenic escherichia coli suppresses transepithelial neutrophil migration

    Get PDF
    Uropathogenic Escherichia coli (UPEC) strains suppress the acute inflammatory response in the urinary tract to ensure access to the intracellular uroepithelial niche that supports the propagation of infection. Our understanding of this initial cross talk between host and pathogen is incomplete. Here we report the identification of a previously uncharacterized periplasmic protein, YbcL, encoded by UPEC that contributes to immune modulation in the urinary tract by suppressing acute neutrophil migration. In contrast to wild-type UPEC, an isogenic strain lacking ybcL expression (UTI89 ΔybcL) failed to suppress transepithelial polymorphonuclear leukocyte (PMN) migration in vitro, a defect complemented by expressing ybcL episomally. YbcL homologs are present in many E. coli genomes; expression of the YbcL variant encoded by nonpathogenic E. coli K-12 strain MG1655 (YbcL(MG)) failed to complement the UTI89 ΔybcL defect, whereas expression of the UPEC YbcL variant (YbcL(UTI)) in MG1655 conferred the capacity for suppressing PMN migration. This phenotypic difference was due to a single amino acid difference (V78T) between the two YbcL homologs, and a majority of clinical UPEC strains examined were found to encode the suppressive YbcL variant. Purified YbcL(UTI) protein suppressed PMN migration in response to live or killed MG1655, and YbcL(UTI) was detected in the supernatant during UPEC infection of bladder epithelial cells or PMNs. Lastly, early PMN influx to murine bladder tissue was augmented upon in vivo infection with UTI89 ΔybcL compared with wild-type UPEC. Our findings demonstrate a role for UPEC YbcL in suppression of the innate immune response during urinary tract infection

    PepSeeker: a database of proteome peptide identifications for investigating fragmentation patterns

    Get PDF
    Proteome science relies on bioinformatics tools to characterize proteins via their proteolytic peptides which are identified via characteristic mass spectra generated after their ions undergo fragmentation in the gas phase within the mass spectrometer. The resulting secondary ion mass spectra are compared with protein sequence databases in order to identify the amino acid sequence. Although these search tools (e.g. SEQUEST, Mascot, X!Tandem, Phenyx) are frequently successful, much is still not understood about the amino acid sequence patterns which promote/protect particular fragmentation pathways, and hence lead to the presence/absence of particular ions from different ion series. In order to advance this area, we have developed a database, PepSeeker (), which captures this peptide identification and ion information from proteome experiments. The database currently contains >185 000 peptides and associated database search information. Users may query this resource to retrieve peptide, protein and spectral information based on protein or peptide information, including the amino acid sequence itself represented by regular expressions coupled with ion series information. We believe this database will be useful to proteome researchers wishing to understand gas phase peptide ion chemistry in order to improve peptide identification strategies. Questions can be addressed to [email protected]

    Plant-microbe eco-evolutionary dynamics in a changing world

    Get PDF
    Both plants and their associated microbiomes can respond strongly to anthropogenic environmental changes. These responses can be both ecological (e.g. a global change affecting plant demography or microbial community composition) and evolutionary (e.g. a global change altering natural selection on plant or microbial populations). As a result, global changes can catalyse eco-evolutionary feedbacks. Here, we take a plant-focused perspective to discuss how microbes mediate plant ecological responses to global change and how these ecological effects can influence plant evolutionary response to global change. We argue that the strong and functionally important relationships between plants and their associated microbes are particularly likely to result in eco-evolutionary feedbacks when perturbed by global changes and discuss how improved understanding of plant-microbe eco-evolutionary dynamics could inform conservation or even agriculture.</p

    The Genesis 12–19 (G1219) Study: A Twin and Sibling Study of Gene–Environment Interplay and Adolescent Development in the UK

    Get PDF
    The Genesis 12–19 (G1219) Study is an ongoing longitudinal study of a sample of UK twin pairs, non-twin sibling pairs, and their parents. G1219 was initially designed to examine the role of gene–environment interplay in adolescent depression. However, since then data have continued to be collected from both parents and their offspring into young adulthood. This has allowed for longitudinal analyses of depression and has enabled researchers to investigate multiple phenotypes and to ask questions about intermediate mechanisms. The study has primarily focused on emotional development, particularly depression and anxiety, which have been assessed at multiple levels of analysis (symptoms, cognitions, and relevant environmental experiences). G1219 has also included assessment of a broader range of psychological phenotypes ranging from antisocial behaviors and substance use to sleep difficulties, in addition to multiple aspects of the environment. DNA has also been collected. The first wave of data collection began in the year 1999 and the fifth wave of data collection will be complete before the end of 2012. In this article, we describe the sample, data collection, and measures used. We also summarize some of the key findings to date

    Relationship Reciprocation Modulates Resource Allocation in Adolescent Social Networks: Developmental Effects

    Full text link
    Adolescence is characterized as a period of social reorientation toward peer relationships, entailing the emergence of sophisticated social abilities. Two studies (Study 1: N = 42, ages 13–17; Study 2: N = 81, ages 13–16) investigated age group differences in the impact of relationship reciprocation within school-based social networks on an experimental measure of cooperation behavior. Results suggest development between mid- and late adolescence in the extent to which reciprocation of social ties predicted resource allocation. With increasing age group, investment decisions increasingly reflected the degree to which peers reciprocated feelings of friendship. This result may reflect social-cognitive development, which could facilitate the ability to navigate an increasingly complex social world in adolescence and promote positive and enduring relationships into adulthood

    Direct and indirect effects of CO2, nitrogen, and community diversity on plant–enemy interactions

    Get PDF
    Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations
    • …
    corecore