509 research outputs found

    Model Reduction for Multiscale Lithium-Ion Battery Simulation

    Full text link
    In this contribution we are concerned with efficient model reduction for multiscale problems arising in lithium-ion battery modeling with spatially resolved porous electrodes. We present new results on the application of the reduced basis method to the resulting instationary 3D battery model that involves strong non-linearities due to Buttler-Volmer kinetics. Empirical operator interpolation is used to efficiently deal with this issue. Furthermore, we present the localized reduced basis multiscale method for parabolic problems applied to a thermal model of batteries with resolved porous electrodes. Numerical experiments are given that demonstrate the reduction capabilities of the presented approaches for these real world applications

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases II: Open Systems

    Full text link
    We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e. the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently introduced extended Boltzmann equation for the nonequilibrium distribution of the radius of curvature matrix and the solution of the standard Boltzmann equation. The escape-rate formalism then gives an explicit result for the Kolmogorov Sinai entropy on the repeller.Comment: submitted to Phys Rev

    Light scattering spectra of supercooled molecular liquids

    Full text link
    The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.Comment: 12 page

    Thermodynamic formalism for systems with Markov dynamics

    Full text link
    The thermodynamic formalism allows one to access the chaotic properties of equilibrium and out-of-equilibrium systems, by deriving those from a dynamical partition function. The definition that has been given for this partition function within the framework of discrete time Markov chains was not suitable for continuous time Markov dynamics. Here we propose another interpretation of the definition that allows us to apply the thermodynamic formalism to continuous time. We also generalize the formalism --a dynamical Gibbs ensemble construction-- to a whole family of observables and their associated large deviation functions. This allows us to make the connection between the thermodynamic formalism and the observable involved in the much-studied fluctuation theorem. We illustrate our approach on various physical systems: random walks, exclusion processes, an Ising model and the contact process. In the latter cases, we identify a signature of the occurrence of dynamical phase transitions. We show that this signature can already be unravelled using the simplest dynamical ensemble one could define, based on the number of configuration changes a system has undergone over an asymptotically large time window.Comment: 64 pages, LaTeX; version accepted for publication in Journal of Statistical Physic

    Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI

    Get PDF
    The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C(+) (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C(+) macrophages and Ly6C(-) macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI-and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation
    corecore