243 research outputs found

    Detection of OH+ and H_2O+ towards Orion KL

    Get PDF
    We report observations of the reactive molecular ions OH+, H_(2)O+, and H_(3)O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H_(2)O+ 1_(11)–0_(00) transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H_(3)O+. OH+ and H_(2)O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s^(-1), and a broad blueshifted absorption similar to that reported recently for HF and para-H_(2)^(18)O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H_(2)O+ for the 9 km s^(-1) component of 9 ± 3 × 10^(12) cm^(-2) and 7 ± 2 × 10^(12) cm^(-2), and those in the outflow of 1.9 ± 0.7 × 10^(13) cm^(-2) and 1.0 ± 0.3 × 10^(13) cm^(-2). Upper limits of 2.4 × 10^(12) cm^(-2) and 8.7 × 10^(12) cm^(-2) were derived for the column densities of ortho and para-H_(3)O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate

    Detection of a Far-Infrared Bow-Shock Nebula Around R Hya: the First MIRIAD Results

    Get PDF
    We present the first results of the MIRIAD (MIPS [Multiband Imaging Photometer for Spitzer] Infra-Red Imaging of AGB [asymptotic giant branch] Dustshells) project using the Spitzer Space Telescope. The primary aim of the project is to probe the material distribution in the extended circumstellar envelopes (CSE) of evolved stars and recover the fossil record of their mass loss history. Hence, we must map the whole of the CSEs plus the surrounding sky for background subtraction, while avoiding the central star that is brighter than the detector saturation limit. With our unique mapping strategy, we have achieved better than one MJy/sr sensitivity in three hours of integration and successfully detected a faint (< 5 MJy/sr), extended (~400 arcsec) far-infrared nebula around the AGB star R Hya. Based on the parabolic structure of the nebula, the direction of the space motion of the star with respect to the nebula shape, and the presence of extended H alpha emission co-spatial to the nebula, we suggest that the detected far-IR nebula is due to a bow shock at the interface of the interstellar medium and the AGB wind of this moving star. This is the first detection of the stellar-wind bow-shock interaction for an AGB star and exemplifies the potential of Spitzer as a tool to examine the detailed structure of extended far-IR nebulae around bright central sources. \Comment: 10 pages, 2 figures, accepted for publication in ApJ

    Metallicity Effects on Mid-Infrared Colors and the 8 micron PAH Emission in Galaxies

    Full text link
    We examine colors from 3.6 micron to 24 micron as a function of metallicity (O/H) for a sample of 34 galaxies. The galaxies range over 2 orders of magnitude in metallicity. They display an abrupt shift in the 8 micron to 24 micron color between metallicities 1/3 to 1/5 of the solar value. The mean 8 micron to 24 micron flux density ratio below and above 12 + log (O/H) = 8.2 is 0.08 +/- 0.04 and 0.70 +/- 0.53, respectively. We use mid-infrared colors and spectroscopy to demonstrate that the shift is primarily due to a decrease in the 8 micron flux density as opposed to an increase in the 24 micron flux density. This result is most simply interpreted as due to a weakening at low metallicity of the mid-infrared emission bands usually attributed to PAHs (polycyclic aromatic hydrocarbons) relative to the small-grain dust emission. However, existing empirical spectral energy distribution models cannot account for the observed short-wavelength (i.e., below 8 micron) colors of the low-metallicity galaxies merely by reducing the strength of the PAH features; some other emission source (e.g., hot dust) is required.Comment: accepted to ApJ Letter

    SPITZER SAGE Observations of Large Magellanic Cloud Planetary Nebulae

    Get PDF
    We present IRAC and MIPS images and photometry of a sample of previously known planetary nebulae (PNe) from the SAGE survey of the Large Magellanic Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in the survey field, 185 objects were detected in at least two of the IRAC bands, and 161 detected in the MIPS 24 micron images. Color-color and color-magnitude diagrams are presented using several combinations of IRAC, MIPS, and 2MASS magnitudes. The location of an individual PN in the color-color diagrams is seen to depend on the relative contributions of the spectral components which include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared forbidden line emission from the ionized gas, warm dust continuum, and emission directly from the central star. The sample of LMC PNe is compared to a number of Galactic PNe and found to not significantly differ in their position in color-color space. We also explore the potential value of IR PNe luminosity functions (LFs) in the LMC. IRAC LFs appear to follow the same functional form as the well-established [O III] LFs although there are several PNe with observed IR magnitudes brighter than the cut-offs in these LFs.Comment: 18 pages, 10 figures, 3 tables, to be published in the Astronomical Journal. Additional online data available at http://www.cfa.harvard.edu/irac/publications

    Investigating the Near-Infrared Properties of Planetary Nebula II. Medium Resolution Spectra

    Full text link
    We present medium-resolution (R~700) near-infrared (lambda = 1 - 2.5 micron) spectra of a sample of planetary nebulae (PNe). A narrow slit was used which sampled discrete locations within the nebulae; observations were obtained at one or more positions in the 41 objects included in the survey. The PN spectra fall into one of four general categories: H I emission line-dominated PNe, H I and H_2 emission line PNe, H_2-dominated PNe, and continuum-dominated PNe. These categories correlate with morphological type, with the elliptical PNe falling into the first group, and the bipolar PNe primarily in the H_2 and continuum emission groups. Other spectral features were observed in all categories, such as continuum emission from the central star, C_2, CN, and CO emission, and warm dust continuum emission. Molecular hydrogen was detected for the first time in four PNe. An excitation analysis was performed using the H_2 line ratios for all of the PN spectra in the survey where a sufficient number of lines were observed. One unexpected result from this analysis is that the H_2 is excited by absorption of ultraviolet photons in most of the PNe surveyed, although for several PNe in our survey collisional excitation in moderate velocity shocks plays an important role. The correlation between bipolar morphology and H_2 emission has been strengthened with the new detections of H_2 in this survey.Comment: 13 pages, 8 tables, 33 figure

    On Orbit Performance of the MIPS Instrument

    Get PDF
    The Multiband Imaging Photometer for Spitzer (MIPS) provides long wavelength capability for the mission, in imaging bands at 24, 70, and 160 microns and measurements of spectral energy distributions between 52 and 100 microns at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The Si:As BIB 24 micron array has excellent photometric properties, and measurements with rms relative errors of 1% or better can be obtained. The two longer wavelength arrays use Ge:Ga detectors with poor photometric stability. However, the use of 1.) a scan mirror to modulate the signals rapidly on these arrays, 2.) a system of on-board stimulators used for a relative calibration approximately every two minutes, and 3.) specialized reduction software result in good photometry with these arrays also, with rms relative errors of less than 10%

    Spitzer SAGE survey of the Large Magellanic Cloud II: Evolved Stars and Infrared Color Magnitude Diagrams

    Get PDF
    Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 um epoch one data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the Large Magellanic Cloud as well as Galactic foreground and extragalactic background populations. Some 32000 evolved stars brighter than the tip of the red giant branch are identified. Of these, approximately 17500 are classified as oxygen-rich, 7000 carbon-rich, and another 1200 as ``extreme'' asymptotic giant branch (AGB) stars. Brighter members of the latter group have been called ``obscured'' AGB stars in the literature owing to their dusty circumstellar envelopes. A large number (1200) of luminous oxygen--rich AGB stars/M supergiants are also identified. Finally, there is strong evidence from the 24 um MIPS channel that previously unexplored, lower luminosity oxygen-rich AGB stars contribute significantly to the mass loss budget of the LMC (1200 such sources are identified).Comment: LaTex, 31 pages, 10 figures. Accepted for publication in the Astronomical Journa

    Spitzer Sage Survey of the Large Magellanic Cloud. III. Star Formation and ~1000 New Candidate Young Stellar Objects

    Get PDF
    We present ~1000 new candidate Young Stellar Objects (YSOs) in the Large Magellanic Cloud selected from Spitzer Space Telescope data, as part of the Surveying the Agents of a Galaxy's Evolution (SAGE) Legacy program. The YSOs, detected by their excess infrared (IR) emission, represent early stages of evolution, still surrounded by disks and/or infalling envelopes. Previously, fewer than 20 such YSOs were known. The candidate YSOs were selected from the SAGE Point Source Catalog from regions of color-magnitude space least confused with other IR-bright populations. The YSOs are biased toward intermediate- to high-mass and young evolutionary stages, because these overlap less with galaxies and evolved stars in color-magnitude space. The YSOs are highly correlated spatially with atomic and molecular gas, and are preferentially located in the shells and bubbles created by massive stars inside. They are more clustered than generic point sources, as expected if star formation occurs in filamentary clouds or shells. We applied a more stringent color-magnitude selection to produce a subset of "high-probability" YSO candidates. We fitted the spectral-energy distributions (SEDs) of this subset and derived physical properties for those that were well fitted. The total mass of these well-fitted YSOs is ~2900 M_☉ and the total luminosity is ~2.1 × 10^6 L_☉ . By extrapolating the mass function with a standard initial mass function and integrating, we calculate a current star-formation rate of ~0.06 M_☉ yr^(–1), which is at the low end of estimates based on total ultraviolet and IR flux from the galaxy (~0.05 – 0.25 M_☉ yr^(–1)), consistent with the expectation that our current YSO list is incomplete. Follow-up spectroscopy and further data mining will better separate the different IR-bright populations and likely increase the estimated number of YSOs. The full YSO list is available as electronic tables, and the SEDs are available as an electronic figure for further use by the scientific community
    • …
    corecore