66 research outputs found
Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields
The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated
Sandwich Panel Cores for Blast Applications: Materials and Graded Density
Sandwich composites are of interest in marine applications due to their high strength-to-weight ratio and tailorable mechanical properties, but their resistance to air blast loading is not well understood. Full-scale 100 kg TNT equivalent air blast testing at a 15 m stand-off distance was performed on glass-fibre reinforced polymer (GFRP) sandwich panels with polyvinyl chloride (PVC); polymethacrylimid (PMI); and styrene acrylonitrile (SAN) foam cores, all possessing the same thickness and density. Further testing was performed to assess the blast resistance of a sandwich panel containing a stepwise graded density SAN foam core, increasing in density away from the blast facing side. Finally a sandwich panel containing compliant polypropylene (PP) fibres within the GFRP front face-sheet, was subjected to blast loading with the intention of preventing front face-sheet cracking during blast. Measurements of the sandwich panel responses were made using high-speed digital image correlation (DIC), and post-blast damage was assessed by sectioning the sandwich panels and mapping the damage observed. It was concluded that all cores are effective in improving blast tolerance and that the SAN core was the most blast tolerant out of the three foam polymer types, with the DIC results showing a lower deflection measured during blast, and post-blast visual inspections showing less damage suffered. By grading the density of the core it was found that through thickness crack propagation was mitigated, as well as damage in the higher density foam layers, thus resulting in a smoother back face-sheet deflection profile. By incorporating compliant PP fibres into the front face-sheet, cracking was prevented in the GFRP, despite damage being present in the core and the interfaces between the core and face-sheets
Identification and Validation of Crystal Plasticity Models for the Nuclear Energy Industry
International audienc
Identification of elastoplastic parameter distribution using digital image correlation
Image processing techniques give access to full field measurements of different thermomechanical data (strain, strain-rate, temperature ...). These techniques enable us to reach a fine characterization of the mechanical properties of materials, or to devise new tests where heterogeneous mechanical fields are sought in order to analyse several complex loading paths during a single test. Using these displacement fields, an identification method is designed to characterize the elastoplastic behaviour of some materials
Mesures de champs appliquées à l'identification de distributions de comportement non linéaires
Dans cet article nous nous intéressons à une méthode variationnelle utilisée précédemment en élasticité, et nous étendons cette méthode à l'identification d'un comportement élasto-plastique dans le cas des petites perturbations, avec l'hypothèse de contrainte plane. L'algorithme de résolution sera présenté, ainsi que des exemples de différente complexité dans le but d'illustrer la faisabilité de la procédure d'identification. La sensibilité de la méthode au bruit est caractérisée sur des champs de déplacement simulés. Enfin un résultat expérimental est présenté pour un essai de traction réalisé sur une éprouvette métallique. Les données que nous obtenons expérimentalement sont bidimensionnelles et ne permettent pas de traiter un problème d'identification volumique complexe. Ceci nous impose de nous restreindre à des situations simples de problèmes de type plaque où les hypothèses de de contrainte plane sont réalistes. Notre mesure nous permet d'obtenir trois composantes de la déformation, nous sommes donc capable d'identifier au plus trois coefficients matériau. Le modèle de comportement retenu est à symétrie cubique. D'avantage de paramètres pourraient être identifiés à partir de champs hétérogènes en faisant des hypothèses sur l'homogénité du matériau. La méthode présentée ici pourrait être étendue facilement à des modèles plus complexes
Recalage à partir de mesures de champs de lois de plasticité cristalline pour les aciers des réacteurs nucléaires
International audienceDes essais de traction réalisés in situ dans un microscope électronique à balayage ont été réalisés pour deux aciers (austénitique et bainito-ferritique). Les champs de déplacement superficiels sont caractérisés par corrélation d'images et la microstructure par EBSD (FIB-EBSD 3D pour la microstructure la plus fine). L'identification de paramètres d'écrouissage de loi de plasticité cristalline est réalisée pour ces deux matériaux par recalage avec une modélisation par éléments finis en s'appuyant sur les mesures cinématiques, et d'efforts appliqués
- …