16 research outputs found
Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by escherichia coli O157:H7
The complement system is an essential component of host defense against pathogens. Previous research in our laboratory identified StcE, a metalloprotease secreted by Escherichia coli O157:H7 that cleaves the serpin C1 esterase inhibitor (C1-INH), a major regulator of the classical complement cascade. Analyses of StcE-treated C1-INH activity revealed that surprisingly, StcE enhanced the ability of C1-INH to inhibit the classical complement-mediated lysis of sheep erythrocytes. StcE directly interacts with both cells and C1-INH, thereby binding C1-INH to the cell surface. This suggests that the augmented activity of StcE-treated C1-INH is due to the increased concentration of C1-INH at the sites of potential lytic complex formation. Indeed, removal of StcE abolishes the ability of C1-INH to bind erythrocyte surfaces, whereas the proteolysis of C1-INH is unnecessary to potentiate its inhibitory activity. Physical analyses showed that StcE interacts with C1-INH within its aminoterminal domain, allowing the unaffected serpin domain to interact with its targets. In addition, StcE-treated C1-INH provides significantly increased serum resistance to E. coli K-12 over native C1-INH. These data suggest that by recruiting C1-INH to cell surfaces, StcE may protect both E. coli O157:H7 and the host cells to which the bacterium adheres from complement-mediated lysis and potentially damaging inflammatory events
Post-Transcriptional Regulation of Gene Expression in Yersinia Species
Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host
Disruption of Fas-FasL signaling by Pla of <i>Y. pestis</i> and NleB of EPEC.
<p>In response to bacterial infections, the host attempts to induce Fas/FasL-dependent cell apoptosis. During pneumonic plague, however, the Pla protease of <i>Y. pestis</i> directly cleaves FasL on effector cells to prevent the initiation of Fas signaling, blocking the activation of the initiator caspase-8, effector caspases -3 and -7, and cell death by apoptosis. As an alternative strategy during gastrointestinal infection, EPEC injects the type-III-secreted effector NleB into the cytoplasm of target cells, where it modifies FADD with N-acetylglucosamine to prevent death domain binding and downstream signaling following the engagement of Fas by FasL. While the mechanisms by which these bacteria target Fas-FasL signaling are distinct, the end result is the same: inhibition of apoptosis.</p
The StcE Protease Contributes to Intimate Adherence of Enterohemorrhagic Escherichia coli O157:H7 to Host Cells
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a diarrheal pathogen that causes attaching and effacing (A/E) lesions on intestinal epithelial cells. Strains of the O157 serogroup carry the large virulence plasmid pO157, which encodes the etp type II secretion system that secretes the genetically linked zinc metalloprotease StcE. The Ler regulator controls expression of many genes involved in A/E lesion formation, as well as StcE, suggesting StcE may be important at a similar time during colonization. Our laboratory has previously demonstrated that StcE cleaves C1-esterase inhibitor, a regulator of multiple inflammation pathways. Here we report two new substrates for StcE, mucin 7 and glycoprotein 340, and that purified StcE reduces the viscosity of human saliva. We tested the hypothesis that StcE contributes to intimate adherence of EHEC to host cells by cleavage of glycoproteins from the cell surface. The fluorescent actin stain (FAS) test was used to observe the intimate adherence represented by fluorescently stained bacteria colocalized with regions of bundled actin formed on HEp-2 cells. An E. coli O157:H7 strain with a stcE gene deletion was not affected in its ability to generally adhere to HEp-2 cells, but it did score threefold lower on the FAS test than wild-type or complemented strains. Addition of exogenous recombinant StcE increased intimate adherence of the mutant to wild-type levels. Thus, StcE may help block host clearance of E. coli O157:H7 by destruction of some classes of glycoproteins, and it contributes to intimate adherence of E. coli O157:H7 to the HEp-2 cell surface
<i>Y. pestis</i> culture supernatants contain active Pla.
<p>(A) Plg-activating ability of whole bacteria, 0.2 µm-filtered culture supernatants, or the filtrate of 100 kDa-passed culture supernatants, from wild-type or Δ<i>pla Y. pestis</i>, respectively. Materials were incubated with human glu-plg and a fluorescent substrate of plasmin for 3 h at 37°C. One experiment representative of 3 independent biological replicates is shown.</p