89 research outputs found
PUTTING THE PASS IN CLASS: IN-CLASS PEER MENTORING ON CAMPUS AND ONLINE
We analyse the introduction of peer mentors into classrooms to understand how in-class mentoring supports studentsâ learning in first-year courses. Peer mentors are high-achieving students who have completed the same course previously, and are hired and trained by the university to facilitate Peer Assisted Study Sessions (PASS). PASS sessions give students the opportunity to deepen their understanding through revision and active learning and are typically held outside of class time. In contrast, our trial embedded peer mentors into the classes for Professional Scientific Thinking, a large (~250 students) workshop-based course at the University of Newcastle. Analysis of Blackboard analytics, student responses to Brookfieldâs Critical Incident Questionnaire and peer mentorsâ journals found that during face-to-face workshops, peer mentors role-modelled ideal student behaviour (e.g. asking questions), rather than act as additional teachers. This helped students new to university to better understand how to interact and learn effectively in class. Moving classes online mid-semester reshaped mentorsâ roles, including through the technical aspects of their work and their engagement with students â adaptations that were essential for supporting students to also adapt effectively to changed learning circumstances. This study highlights the benefits of embedding student mentors in classrooms, both on campus and online
The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet
Kepler-10b was the first rocky planet detected by the Kepler satellite and
con- firmed with radial velocity follow-up observations from Keck-HIRES. The
mass of the planet was measured with a precision of around 30%, which was
insufficient to constrain models of its internal structure and composition in
detail. In addition to Kepler-10b, a second planet transiting the same star
with a period of 45 days was sta- tistically validated, but the radial
velocities were only good enough to set an upper limit of 20 Mearth for the
mass of Kepler-10c. To improve the precision on the mass for planet b, the
HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N
spectrograph on the Telescopio Nazionale Galileo on La Palma. In to- tal, 148
high-quality radial-velocity measurements were obtained over two observing
seasons. These new data allow us to improve the precision of the mass
determina- tion for Kepler-10b to 15%. With a mass of 3.33 +/- 0.49 Mearth and
an updated radius of 1.47 +0.03 -0.02 Rearth, Kepler-10b has a density of 5.8
+/- 0.8 g cm-3, very close to the value -0.02 predicted by models with the same
internal structure and composition as the Earth. We were also able to determine
a mass for the 45-day period planet Kepler-10c, with an even better precision
of 11%. With a mass of 17.2 +/- 1.9 Mearth and radius of 2.35 +0.09 -0.04
Rearth, -0.04 Kepler-10c has a density of 7.1 +/- 1.0 g cm-3. Kepler-10c
appears to be the first strong evidence of a class of more massive solid
planets with longer orbital periods.Comment: 44 pages, 8 figures, accepted for publication in Ap
Evidence of tidal debris from Omega Cen in the Kapteyn Group
This paper presents a detailed kinematic and chemical analysis of 16 members
of the Kapteyn moving group. The group does not appear to be chemically
homogenous. However, the kinematics and the chemical abundance patterns seen in
14 of the stars in this group are similar to those observed in the well-studied
cluster, Omega Centauri. Some members of this moving group may be remnants of
the tidal debris of Omega Cen, left in the Galactic disk during the merger
event which deposited Omega Cen into the Milky Way.Comment: 30 pages, 9 figures, 11 tables. Accepted for publication in A
Characterizing K2 planet discoveries : a super-Earth transiting the bright K dwarf HIP 116454
We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =â0.16 ± 0.08 and has a radius R = 0.716 ± 0.024 R â and mass M = 0.775 ± 0.027 M â. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of pR = 2.53 ± 0.18 R â. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M â planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.Publisher PDFPeer reviewe
Kepler-21b: A 1.6REarth Planet Transiting the Bright Oscillating F Subgiant Star HD 179070
We present Kepler observations of the bright (V=8.3), oscillating star HD
179070. The observations show transit-like events which reveal that the star is
orbited every 2.8 days by a small, 1.6 R_Earth object. Seismic studies of HD
179070 using short cadence Kepler observations show that HD 179070 has a
frequencypower spectrum consistent with solar-like oscillations that are
acoustic p-modes. Asteroseismic analysis provides robust values for the mass
and radius of HD 179070, 1.34{\pm}0.06 M{\circ} and 1.86{\pm}0.04 R{\circ}
respectively, as well as yielding an age of 2.84{\pm}0.34 Gyr for this F5
subgiant. Together with ground-based follow-up observations, analysis of the
Kepler light curves and image data, and blend scenario models, we
conservatively show at the >99.7% confidence level (3{\sigma}) that the transit
event is caused by a 1.64{\pm}0.04 R_Earth exoplanet in a 2.785755{\pm}0.000032
day orbit. The exoplanet is only 0.04 AU away from the star and our
spectroscopic observations provide an upper limit to its mass of ~10 M_Earth
(2-{\sigma}). HD 179070 is the brightest exoplanet host star yet discovered by
Kepler.Comment: Accepted to Ap
Identifying exoplanets with deep learning. IV. Removing stellar activity signals from radial velocity measurements using neural networks
Funding: This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (SCORE grant agreement No. 851555). A.C.C. acknowledges support from the Science and Technology Facilities Council (STFC) consolidated grant No. ST/R000824/1 and UKSA grant ST/R003203/1. R.D.H. is funded by the UK Science and Technology Facilities Council (STFC)âs Ernest Rutherford Fellowship (grant number ST/V004735/1). M.P. acknowledges financial support from the ASI-INAF agreement No. 2018-16-HH.0. A.M. acknowledges support from the senior Kavli Institute Fellowships.Exoplanet detection with precise radial velocity (RV) observations is currently limited by spurious RV signals introduced by stellar activity. We show that machine-learning techniques such as linear regression and neural networks can effectively remove the activity signals (due to starspots/faculae) from RV observations. Previous efforts focused on carefully filtering out activity signals in time using modeling techniques like Gaussian process regression. Instead, we systematically remove activity signals using only changes to the average shape of spectral lines, and use no timing information. We trained our machine-learning models on both simulated data (generated with the SOAP 2.0 software) and observations of the Sun from the HARPS-N Solar Telescope. We find that these techniques can predict and remove stellar activity both from simulated data (improving RV scatter from 82 to 3 cm sâ1) and from more than 600 real observations taken nearly daily over 3 yr with the HARPS-N Solar Telescope (improving the RV scatter from 1.753 to 1.039 m sâ1, a factor of âŒ1.7 improvement). In the future, these or similar techniques could remove activity signals from observations of stars outside our solar system and eventually help detect habitable-zone Earth-mass exoplanets around Sun-like stars.Publisher PDFPeer reviewe
Kepler-102 : masses and compositions for a super-Earth and sub-Neptune orbiting an active star
Funding: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1842402. C.L.B., L.W., and D.H. acknowledge support from National Aeronautics and Space Administration (grant No. 80NSSC19K0597) issued through the Astrophysics Data Analysis Program. D.H. also acknowledges support from the Alfred P. Sloan Foundation. K.R. acknowledges support from the UK STFC via grant No. ST/V000594/1. E.G. acknowledges support from NASA grant No. 80NSSC20K0957 (Exoplanets Research Program).Radial velocity (RV) measurements of transiting multiplanet systems allow us to understand the densities and compositions of planets unlike those in the solar system. Kepler-102, which consists of five tightly packed transiting planets, is a particularly interesting system since it includes a super-Earth (Kepler-102d) and a sub-Neptune-sized planet (Kepler-102e) for which masses can be measured using RVs. Previous work found a high density for Kepler-102d, suggesting a composition similar to that of Mercury, while Kepler-102e was found to have a density typical of sub-Neptune size planets; however, Kepler-102 is an active star, which can interfere with RV mass measurements. To better measure the mass of these two planets, we obtained 111 new RVs using Keck/HIRES and Telescopio Nazionale Galileo/HARPS-N and modeled Kepler-102's activity using quasiperiodic Gaussian process regression. For Kepler-102d, we report a mass upper limit Md < 5.3 Mâ (95% confidence), a best-fit mass Md = 2.5 ± 1.4 Mâ, and a density Ïd = 5.6 ± 3.2 g cmâ3, which is consistent with a rocky composition similar in density to the Earth. For Kepler-102e we report a mass Me = 4.7 ± 1.7 Mâ and a density Ïe = 1.8 ± 0.7 g cmâ3. These measurements suggest that Kepler-102e has a rocky core with a thick gaseous envelope comprising 2%â4% of the planet mass and 16%â50% of its radius. Our study is yet another demonstration that accounting for stellar activity in stars with clear rotation signals can yield more accurate planet masses, enabling a more realistic interpretation of planet interiors.Publisher PDFPeer reviewe
The Security imaginary: Explaining military isomorphism
This article proposes the notion of a security imaginary as a heuristic
tool for exploring military isomorphism (the phenomenon that
weapons and military strategies begin to look the same across the
world) at a time when the US model of defence transformation is
being adopted by an increasing number of countries. Built on a critical
constructivist foundation, the security-imaginary approach is contrasted
with rationalist and neo-institutionalist ways of explaining
military diffusion and emulation. Merging cultural and constructivist
themes, the article offers a âstrong culturalâ argument to explain why a
country would emulate a foreign military model and how this model is
constituted in and comes to constitute a societyâs security imaginary.Web of Scienc
Independent validation of the temperate super-Earth HD 79211 b using HARPS-N
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. DGE1745303. The HARPS-N project was funded by the Prodex Program of the Swiss Space Office (SSO), the Harvard- University Origin of Life Initiative (HUOLI), the Scottish Universities Physics Alliance (SUPA), the University of Geneva, the Smithsonian Astrophysical Observatory (SAO), the Italian National Astrophysical Institute (INAF), University of St. Andrews, Queen's University Belfast, and University of Edinburgh. Parts of this work have been supported by the National Aeronautics and Space Administration under grant No. NNX17AB59G, issued through the Exoplanets Research Program. Parts of this work have been supported by the Brinson Foundation. R.D.H. is funded by the UK Science and Technology Facilities Council (STFC)'s Ernest Rutherford Fellowship (grant No. ST/V004735/1). T.G.W and A.C.C acknowledge support from STFC consolidated grant Nos. ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present high-precision radial velocities (RVs) from the HARPS-N spectrograph for HD 79210 and HD 79211, two M0V members of a gravitationally bound binary system. We detect a planet candidate with a period of 24.421â0.017+0.016 days around HD 79211 in these HARPS-N RVs, validating the planet candidate originally identified in CARMENES RV data alone. Using HARPS-N, CARMENES, and RVs spanning a total of 25 yr, we further refine the planet candidate parameters to P = 24.422 ± 0.014 days, K = 3.19 ± 0.27 m sâ1, M sin i = 10.6 ± 1.2Mâ, and a = 0.142 ± 0.005 au. We do not find any additional planet candidate signals in the data of HD 79211, nor do we find any planet candidate signals in HD 79210. This system adds to the number of exoplanets detected in binaries with M-dwarf members and serves as a case study for planet formation in stellar binaries.Publisher PDFPeer reviewe
- âŠ