87 research outputs found
BASE-STEP: A transportable antiproton reservoir for fundamental interaction studies
Currently, the only worldwide source of low-energy antiprotons is the
AD/ELENA facility located at CERN. To date, all precision measurements on
single antiprotons have been conducted at this facility and provide stringent
tests of the fundamental interactions and their symmetries. However, the
magnetic field fluctuations from the facility operation limit the precision of
upcoming measurements. To overcome this limitation, we have designed the
transportable antiproton trap system BASE-STEP to relocate antiprotons to
laboratories with a calm magnetic environment. We anticipate that the
transportable antiproton trap will facilitate enhanced tests of CPT invariance
with antiprotons, and provide new experimental possibilities of using
transported antiprotons and other accelerator-produced exotic ions. We present
here the technical design of the transportable trap system. This includes the
transportable superconducting magnet, the cryogenic inlay consisting of the
trap stack and the detection systems, and the differential pumping section to
suppress the residual gas flow into the cryogenic trap chamber.Comment: To be submitted to Rev. Sci. Instrument
Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment
We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment
Ultra thin polymer foil cryogenic window for antiproton deceleration and storage
We present the design and characterisation of a cryogenic window based on an
ultra-thin aluminised PET foil at T < 10K, which can withstand a pressure
difference larger than 1bar at a leak rate < mbar l/s.
Its thickness of approximately 1.7 m makes it transparent to various types
of particles over a broad energy range. To optimise the transfer of 100keV
antiprotons through the window, we tested the degrading properties of different
aluminium coated PET foils of thicknesses between 900nm and 2160nm, concluding
that 1760nm foil decelerates antiprotons to an average energy of 5 keV. We have
also explicitly studied the permeation as a function of coating thickness and
temperature, and have performed extensive thermal and mechanical endurance and
stress tests. Our final design integrated into the experiment has an effective
open surface consisting of 7 holes with 1 mm diameter and will transmit up to
2.5% of the injected 100keV antiproton beam delivered by the AD/ELENA-facility
of CERN
A 16 Parts per Trillion Comparison of the Antiproton-to-Proton q/m Ratios
The Standard Model (SM) of particle physics is both incredibly successful and
glaringly incomplete. Among the questions left open is the striking imbalance
of matter and antimatter in the observable universe which inspires experiments
to compare the fundamental properties of matter/antimatter conjugates with high
precision. Our experiments deal with direct investigations of the fundamental
properties of protons and antiprotons, performing spectroscopy in advanced
cryogenic Penning-trap systems. For instance, we compared the proton/antiproton
magnetic moments with 1.5 ppb fractional precision, which improved upon
previous best measurements by a factor of >3000. Here we report on a new
comparison of the proton/antiproton charge-to-mass ratios with a fractional
uncertainty of 16ppt. Our result is based on the combination of four
independent long term studies, recorded in a total time span of 1.5 years. We
use different measurement methods and experimental setups incorporating
different systematic effects. The final result,
= ,
is consistent with the fundamental charge-parity-time (CPT) reversal
invariance, and improves the precision of our previous best measurement by a
factor of 4.3. The measurement tests the SM at an energy scale of
GeV (CL 0.68), and improves 10 coefficients of the
Standard Model Extension (SME). Our cyclotron-clock-study also constrains
hypothetical interactions mediating violations of the clock weak equivalence
principle (WEP) for antimatter to a level of , and enables the first differential test of the WEP
using antiprotons \cite{hughes1991constraints}. From this interpretation we
constrain the differential WEP-violating coefficient to
Agri-Environmental Policy Measures in Israel: The Potential of Using Market-Oriented Instruments
This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public’s preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments’ contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use
Est locus uni cuique suus: City and Status in Horace’s Satires 1.8 and 1.9
This is the published version
Accumulation of Positrons from a LINAC Based Source
International audienc
Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
We investigate the problem of subsidising afforestation when private information exists with respect to the level of private utility derived from the project. We develop a simple model that allows for an intelligent design of contracts when information is asymmetric. The model involves the Principal and two groups of agents (landowners): a green' group deriving high private utility from the projects and a conventional' group deriving lower utility. Afforestation projects may be produced in different environmental quality, and we distinguish between two cases, a high quality and a low quality project. We find that the optimal set of contracts under asymmetric information involves two different contracts. One in which green landowners are somewhat overcompensated for projects of high quality, and one where conventional landowners are offered contracts including lower quality projects, compared to the symmetric case, but with compensation equal to his indifference payment. It is the ability to reduce quality requirements along with subsidies offered that allows for revelation of the private information. Finally, we discus how the results obtained may be used in the implementation of incentive schemes
Publisher Erratum: Production of antihydrogen atoms by 6 keV antiprotons through a positronium cloud
- …