37 research outputs found

    Difference in Virulence of Mycobacterium avium Isolates Sharing Indistinguishable DNA Fingerprint Determined in Murine Model of Lung Infection

    Get PDF
    Background: Opportunistic Mycobacterium avium typically causes disease in immunocompromised patients and in some groups of apparently healthy individuals. the high virulence of some bacterial lineages increases the disease risk. High-resolution molecular genotyping studies of M. avium clinical isolates demonstrated that some genotype patterns were more prevalent than others, suggesting that close genetic relatedness of these successful isolates sharing a similar genotype could determine similar biological properties associated with high virulence.Methods and Findings: in this study, we aimed to compare the virulence and pathogenic properties of two epidemiologically unrelated M. avium isolates sharing an indistinguishable DNA fingerprint in a well-characterized model of pulmonary infection in mice, resistant or susceptible to mycobacteria. the mice, C57BL/6 wild-type or IFN-gamma gene disrupted (GKO), respectively, were intratracheally infected with two isolates, H27 (human blood isolate) and P104 (pig lymph node isolate), and the lungs were examined for bacterial loads, histopathology and cytokine gene expression. the obtained data demonstrated significant differences in the virulence properties of these strains. Although the H27 strain grew significantly faster than P104 in the early stage of infection, this bacterium induced protective immunity that started to reduce bacterial numbers in the wild-type mice, whereas the P104 strain established a chronic infection. in the GKO mice, both strains were capable of causing a chronic infection, associated with higher bacterial burdens and severe lung pathology, in a similar manner.Conclusions/Significance: the results demonstrated that the studied isolates differed in the pathogenic properties although were indistinguishable by actually widely used genotyping techniques demonstrating that the genotype similarity does not predict similarity in virulence of M. avium isolates.Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Norte Fluminense, Lab Biol Recognit, Rio de Janeiro, BrazilUniv Estadual Norte Fluminense, Lab Anim Morphol & Pathol, Rio de Janeiro, BrazilInst Butantan, Lab Immunochem, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilFAPERJ: E-26/111.6111CNPq: 410555Web of Scienc

    Nitric oxide production, inhibitory, antioxidant and antimycobacterial activities of the fruits extract and flavonoid content of Schinus terebinthifolius

    Get PDF
    AbstractThe extract of the fruits from Schinus terebinthifolius Raddi, Anacardiaceae, was obtained by exhaustive extraction with methanol. Its fractions and isolated compounds were collected by fractionation with RP-2 column chromatography. The crude extract, the flavonoid fraction and the isolated compound identified as apigenin (1), were investigated regarding its inhibitory action of nitric oxide production by LPS-stimulated macrophages, antioxidant activity by DPPH and the antimycobacterial activity against Mycobacterium bovis BCG. The samples exhibited a significant inhibitory effect on the nitric oxide production (e.g., 1, IC50 19.23 ± 1.64μg/ml) and also showed antioxidant activity. In addition, S. terebinthifolius samples inhibited the mycobacterial growth (e.g., 1, IC50 14.53 ± 1.25μg/ml). The necessary concentration to produce 50% of the maximum response (IC50) of these activities did not elicit a significant cytotoxic effect when compared with the positive control (100% of lysis). The antioxidant and nitric oxide inhibition activity displayed by S. terebinthifolius corroborates its ethnopharmacological use of this specie as an anti-inflammatory. In addition, our results suggest that the flavonoids of S. terebinthifolius are responsible for the activities found. We, describe for the first time the activity against Mycobacterium bovis BCG and the inhibition of nitric oxide production for S. terebinthifolius

    Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

    Get PDF
    Background: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-gamma, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-gamma and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. Conclusions: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.Fundação de Amparo a Pesquisa de Rio de Janeiro (FAPERJ), BrazilConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazi

    Apa antigen of Mycobacterium avium subsp. paratuberculosis as a target for species-specific immunodetection of the bacteria in infected tissues of cattle with paratuberculosis

    No full text
    Comparative genomics of Mycobacterium spp. have revealed conservative genes and respective proteins differently expressed in mycobacteria that could be used as targets for the species-specific immunodiagnostics. The alanine and proline-rich antigen Apa is a mycobacterial protein that present significant variability in primary sequence length and composition between members of M. avium and M. tuberculosis complexes. In this study, the recombinant Apa protein encoded by the MAP1569/ModD gene of M. avium subsp. paratuberculosis (Map) was used to generate a panel of monoclonal antibodies which were shown to recognize the most important veterinary pathogens of the M. avium complex, specifically Map and M. avium subsp. hominissuis, and which did not cross-react with M. bovis or M. tuberculosis. The produced antibodies were demonstrated to be a useful tool for the species-specific immunofluorescence or immunohistochemical detection of Map in experimentally infected cell cultures or intestinal tissues from cattle with bovine paratuberculosis and, additionally, they may be employed for the discrimination of pathogenic M. avium subspecies via Western blotting.Fil: Souza, Giliane S.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Rodrigues, Ana Bárbara F.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Gioffré, Andrea Karina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Romano, Maria Isabel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carvalho, Eulógio C. Q.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Ventura, Thatiana L. B.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Lasunskaia, Elena B.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; Brasi

    Bothropic antivenom based on monoclonal antibodies, is it possible?

    Get PDF
    AbstractNeutralizing monoclonal antibodies against three major toxic components of Bothrops atrox venom were produced and tested. The mAbs against phospholipase A2, hemorrhagic metalloprotease, and thrombin-like enzymes were produced in large amounts and purified with caprylic acid followed by ammonium sulfate precipitation. Purified mAbs were analyzed by SDS-PAGE and their ability to neutralize the respective toxins was tested. Five Swiss mice were injected i.p. with 13.5 mg of pooled mAbs and challenged via s.c. route with venom. Survival rate was recorded for the next 48 h. All mice treated and challenged with venom survived, whereas only one mouse in the control group survived. Bleeding time in mice treated with mAbs was similar to that observed in control mice. Our results show that monoclonal antibodies neutralized the lethal toxicity of Bothrops venom and indicate that there is a reasonable possibility of developing antivenoms based on humanized mAbs to treat victims of venomous animals in the future

    Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

    No full text
    Abstract\ud \ud Background\ud Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity.\ud \ud \ud Results\ud Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production.\ud \ud \ud Conclusions\ud The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype

    Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

    No full text
    Abstract Background Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. Conclusions The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype
    corecore