615 research outputs found

    Martian Eolian Dust Probed by ChemCam

    Get PDF
    The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO_2. The dust FeO and TiO_2 contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent

    Update on Automated Classification of Interplanetary Dust Particles

    Get PDF
    Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria

    Martian Eolian Dust Probed by ChemCam

    Get PDF
    The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO_2. The dust FeO and TiO_2 contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent

    The Composition of Comets

    Full text link
    This paper is the result of the International Cometary Workshop, held in Toulouse, France in April 2014, where the participants came together to assess our knowledge of comets prior to the ESA Rosetta Mission. In this paper, we look at the composition of the gas and dust from the comae of comets. With the gas, we cover the various taxonomic studies that have broken comets into groups and compare what is seen at all wavelengths. We also discuss what has been learned from mass spectrometers during flybys. A few caveats for our interpretation are discussed. With dust, much of our information comes from flybys. They include {\it in situ} analyses as well as samples returned to Earth for laboratory measurements. Remote sensing IR observations and polarimetry are also discussed. For both gas and dust, we discuss what instruments the Rosetta spacecraft and Philae lander will bring to bear to improve our understanding of comet 67P/Churyumov-Gerasimenko as "ground-truth" for our previous comprehensive studies. Finally, we summarize some of the initial Rosetta Mission findings.Comment: To appear in Space Science Review

    Cometary dust collected by MIDAS on board Rosetta II. Particle shape descriptors and pristineness evaluation

    Full text link
    The MIDAS (Micro-Imaging Dust Analysis System) atomic force microscope on board the Rosetta comet orbiter investigated and measured the 3D topography of a few hundred nm to tens of Ό\mum sized dust particles of 67P/Churyumov-Gerasimenko with resolutions down to a few nanometers, giving insights into the physical processes of our early Solar System. We analyze the shapes of the cometary dust particles collected by MIDAS on the basis of a recently updated particle catalog with the aim to determine which structural properties remained pristine. We develop a set of shape descriptors and metrics such as aspect ratio, elongation, circularity, convexity, and particle surface/volume distribution, which can be used to describe the distribution of particle shapes. Furthermore, we compare the structure of the MIDAS dust particles and the clusters in which the particles were deposited to those found in previous laboratory experiments and by Rosetta/COSIMA. Finally, we combine our findings to calculate a pristineness score for MIDAS particles and determine the most pristine particles and their properties. We find that the morphological properties of all cometary dust particles at the micrometer scale are surprisingly homogeneous despite originating from diverse cometary environments (e.g., different collection targets that are associated with cometary activities/source regions and collection velocities/periods). We next find that the types of clusters found by MIDAS show good agreement with those defined by previous laboratory experiments, however, there are some differences to those found by Rosetta/COSIMA. Based on our result, we rate 19 out of 1082 MIDAS particles at least moderately pristine, i.e., they are not substantially flattened by impact, not fragmented, and/or not part of a fragmentation cluster.Comment: 40 pages, 31 figures, 1 online tabl

    CONSERT suggests a change in local properties of 67P/Churyumov-Gerasimenko's nucleus at depth

    No full text
    International audienceAfter the successful landing of Philae on the nucleus of 67P/Churyumov-Gerasimenko, the Rosetta mission provided the first opportunity of performing measurements with the CONSERT tomographic radar in November 2014. CONSERT data were acquired during this first science sequence. They unambiguously showed that propagation through the smaller lobe of the nucleus was achieved. Aims. While the ultimate objective of the CONSERT radar is to perform the tomography of the nucleus, this paper focuses on the local characterization of the shallow subsurface in the area of Philae’s final landing site, specifically determining the possible presence of a permittivity gradient below the nucleus surface.Methods. A number of electromagnetic simulations were made with a ray-tracing code to parametrically study how the gradient of the dielectric constant in the near-subsurface affects the ability of CONSERT to receive signals.Results. At the 90 MHz frequency of CONSERT, the dielectric constant is a function of porosity, composition, and temperature. The dielectric constant values considered for the study are based on observations made by the other instruments of the Rosetta mission, which indicate a possible near-surface gradient in physical properties and on laboratory measurements made on analog samples. Conclusions. The obtained simulated data clearly show that if the dielectric constant were increasing with depth, it would have prevented the reception of signal at the CONSERT location during the first science sequence. We conclude from our simulations that the dielectric constant most probably decreases with depth

    Scattering of light by a large, densely packed agglomerate of small silica spheres

    Get PDF
    We model the measured phase function and degree of linear polarization of a macroscopic agglomerate made of micrometer-scale silica spheres using the methodology of multiple scattering. In the laboratory work, the agglomerate is produced ballistically, characterized by scanning electron microscopy, and measured with the PROGRA(2) instrument to obtain the light scattering properties. The model phase function and degree of polarization are in satisfactory agreement with the experimental data. To our best knowledge, this is the first time the degree of linear polarization has been modeled well for a large, densely packed agglomerate composed of small particles with known sizes and shapes. The study emphasizes the relevance of the degree of linear polarization and gives insights into the effects of particle aggregation on the scattering characteristics. (C) 2020 Optical Society of AmericaPeer reviewe

    Apatites in Gale Crater

    Get PDF
    ChemCam is an active remote sensing instrument suite that has operated successfully on MSL since landing Aug. 6th, 2012. It uses laser pulses to remove dust and to analyze rocks up to 7 m away. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The intensities of the emission lines scale with the abundances of the related element. ChemCam is sensitive to most major rock-forming elements as well as to a set of minor and trace elements such as F, Cl, Li, P, Sr, Ba, and Rb. The measured chemical composition can then be used to infer the mineralogical composition of the ablated material. Here, we report a summary of inferred apatite detections along the MSL traverse at Gale Crater. We present the geologic settings of these findings and derive some interpretations about the formation conditions of apatite in time and space

    Spectropolarimetry of the Deep Impact target comet 9P/Tempel 1 with HiVIS

    Get PDF
    High resolution spectropolarimetry of the Deep Impact target, comet 9P/ Tempel 1, was performed during the impact event on July 4th, 2005 with the HiVIS Spectropolarimeter and the AEOS 3.67m telescope on Haleakala, Maui. We observed atypical polarization spectra that changed significantly in the few hours after the impact. The polarization of scattered light as a function of wavelength is very sensitive to the size and composition (complex refractive index) of the scattering particles as well as the scattering geometry. As opposed to most observations of cometary dust, which show an increase in the linear polarization with the wavelength (at least in the visible domain and for phase angles greater than about 30%, a red polarization spectrum) observations of 9P/Tempel 1 at a phase angle of 41 degrees beginning 8 minutes after impact and centered at 6:30UT showed a polarization of 4% at 650 nm falling to 3% at 950 nm. The next observation, centered an hour later showed a polarization of 7% at 650 nm falling to 2% at 950nm. This corresponds to a spectropolarimetric gradient, or slope, of -0.9% per 1000 Angstroms 40 minutes after impact, decreasing to a slope of -2.3% per 1000 Angstroms an hour and a half after impact. This is an atypical blue polarization slope, which became more blue 1 hour after impact. The polarization values of 4% and 7% at 650nm are typical for comets at this scattering angle, whereas the low polarization of 2% and 3% at 950nm is not. We compare observations of comet 9P/Tempel 1 to that of a typical comet, C/2004 Machholz, at a phase angle of 30 degrees which showed a typical red slope, rising from 2% at 650nm to 3% at 950nm in two different observations (+1.0 and +0.9% per 1000 Angstroms).Comment: Icarus Deep Impact special issue, accepted Aug 28 200
    • 

    corecore