9 research outputs found

    The chronotype of elite athletes

    Get PDF
    The aims of this study were (i) to compare the chronotype distribution of elite athletes to a young adult population and (ii) to determine if there was a tendency for athletes to select and/or participate in sports which suited their chronotype. A total of 114 elite athletes from five sports (cricket, cycling, hockey, soccer and triathlon) participated in this study. The participants’ chronotype, sleepiness, sleep satisfaction and sleep quality were determined using the Horne and Östberg Morningness and Eveningness questionnaire, the Epworth Sleepiness Scale and questions concerning their sleep satisfaction and quality. All questionnaires were administered during a typical training phase that was not in the lead up to competition and/or post competition. No differences between chronotype group for sleepiness, sleep satisfaction or sleep quality were found. There was a significantly higher proportion of triathletes that were morning and intermediate types compared to the control group χ2 (2) = 7.5, p = 0.02. A significant relationship between sport and chronotype group (χ2(4)=15.9, p = 0.04) was observed, with a higher frequency of morning types involved in sports that required morning training. There was a clear indication that athletes tended to select and pursue sports that suited their chronotype. This was evident by the amount of morning types involved in morning sports. Given that athletes are more likely to pursue and excel in sports which suit their chronotype, it is recommended that coaches consider the athlete’s chronotype during selection processes or if possible design and implement changes to training schedules to either suit the athletes’ chronotype or the timing of an upcoming competition

    A validation study of a commercial wearable device to automatically detect and estimate sleep

    Get PDF
    The aims of this study were to: (1) compare actigraphy (ACTICAL) and a commercially available sleep wearable (i.e., WHOOP) under two functionalities (i.e., sleep auto-detection (WHOOP-AUTO) and manual adjustment of sleep (WHOOP-MANUAL)) for two-stage categorisation of sleep (sleep or wake) against polysomnography, and; (2) compare WHOOP-AUTO and WHOOP-MANUAL for four-stage categorisation of sleep (wake, light sleep, slow wave sleep (SWS), or rapid eye movement sleep (REM)) against polysomnography. Six healthy adults (male: n = 3; female: n = 3; age: 23.0 ± 2.2 yr) participated in the nine-night protocol. Fifty-four sleeps assessed by ACTICAL, WHOOP-AUTO and WHOOP-MANUAL were compared to polysomnography using difference testing, Bland–Altman comparisons, and 30-s epoch-by-epoch comparisons. Compared to polysomnography, ACTICAL overestimated total sleep time (37.6 min) and underestimated wake (−37.6 min); WHOOP-AUTO underestimated SWS (−15.5 min); and WHOOP-MANUAL underestimated wake (−16.7 min). For ACTICAL, sensitivity for sleep, specificity for wake and overall agreement were 98%, 60% and 89%, respectively. For WHOOP-AUTO, sensitivity for sleep, wake, and agreement for two-stage and four-stage categorisation of sleep were 90%, 60%, 86% and 63%, respectively. For WHOOP-MANUAL, sensitivity for sleep, wake, and agreement for two-stage and four-stage categorisation of sleep were 97%, 45%, 90% and 62%, respectively. WHOOP-AUTO and WHOOP-MANUAL have a similar sensitivity and specificity to actigraphy for two-stage categorisation of sleep and can be used as a practical alternative to polysomnography for two-stage categorisation of sleep and four-stage categorisation of sleep

    Managing travel fatigue and jet lag in athletes : a review and consensus statement

    Get PDF
    Athletes are increasingly required to travel domestically and internationally, often resulting in travel fatigue and jet lag. Despite considerable agreement that travel fatigue and jet lag can be a real and impactful issue for athletes regarding performance and risk of illness and injury, evidence on optimal assessment and management is lacking. Therefore 26 researchers and/or clinicians with knowledge in travel fatigue, jet lag and sleep in the sports setting, formed an expert panel to formalise a review and consensus document. This manuscript includes definitions of terminology commonly used in the field of circadian physiology, outlines basic information on the human circadian system and how it is affected by time-givers, discusses the causes and consequences of travel fatigue and jet lag, and provides consensus on recommendations for managing travel fatigue and jet lag in athletes. The lack of evidence restricts the strength of recommendations that are possible but the consensus group identified the fundamental principles and interventions to consider for both the assessment and management of travel fatigue and jet lag. These are summarised in travel toolboxes including strategies for pre-flight, during flight and post-flight. The consensus group also outlined specific steps to advance theory and practice in these areas.https://www.springer.com/journal/402792022-07-14hj2021Sports MedicineStatistic

    The validity of activity monitors for measuring sleep in elite athletes

    No full text
    Objectives: There is a growing interest in monitoring the sleep of elite athletes. Polysomnography is considered the gold standard for measuring sleep, however this technique is impractical if the aim is to collect data simultaneously with multiple athletes over consecutive nights. Activity monitors may be a suitable alternative for monitoring sleep, but these devices have not been validated against polysomnography in a population of elite athletes. Design: Participants (n = 16) were endurance-trained cyclists participating in a 6-week training camp. Methods: A total of 122 nights of sleep were recorded with polysomnography and activity monitors simultaneously. Agreement, sensitivity, and specificity were calculated from epoch-for-epoch comparisons of polysomnography and activity monitor data. Sleep variables derived from polysomnography and activity monitors were compared using paired t-tests. Activity monitor data were analysed using low, medium, and high sleep–wake thresholds. Results: Epoch-for-epoch comparisons showed good agreement between activity monitors and polysomnography for each sleep–wake threshold (81–90%). Activity monitors were sensitive to sleep (81–92%), but specificity differed depending on the threshold applied (67–82%). Activity monitors underestimated sleep duration (18–90 min) and overestimated wake duration (4–77 min) depending on the threshold applied. Conclusions: Applying the correct sleep–wake threshold is important when using activity monitors to measure the sleep of elite athletes. For example, the default sleep–wake threshold ( > 40 activity counts = wake) underestimates sleep duration by ∼50 min and overestimates wake duration by ∼40 min. In contrast, sleep–wake thresholds that have a high sensitivity to sleep ( > 80 activity counts = wake) yield the best combination of agreement, sensitivity, and specificity

    How much sleep does an elite athlete need?

    No full text
    Purpose: Anecdotal reports indicate that many elite athletes are dissatisfied with their sleep, but little is known about their actual sleep requirements. Therefore, the aim of this study was to compare the self-assessed sleep need of elite athletes with an objective measure of their habitual sleep duration. Methods: Participants were 175 elite athletes (n = 30 females), age 22.2 (3.8) years (mean [SD]) from 12 individual and team sports. The athletes answered the question “how many hours of sleep do you need to feel rested?” and they kept a self-report sleep diary and wore a wrist activity monitor for ∼12 nights during a normal phase of training. For each athlete, a sleep deficit index was calculated by subtracting their average sleep duration from their self-assessed sleep need. Results: The athletes needed 8.3 (0.9) hours of sleep to feel rested, their average sleep duration was 6.7 (0.8) hours, and they had a sleep deficit index of 96.0 (60.6) minutes. Only 3% of athletes obtained enough sleep to satisfy their self-assessed sleep need, and 71% of athletes fell short by an hour or more. Specifically, habitual sleep duration was shorter in athletes from individual sports than in athletes from team sports (F1,173 = 13.1, P < .001; d = 0.6, medium), despite their similar sleep need (F1,173 = 1.40, P = .24; d = 0.2, small). Conclusions: The majority of elite athletes obtain substantially less than their self-assessed sleep need. This is a critical finding, given that insufficient sleep may compromise an athlete’s capacity to train effectively and/or compete optimally

    The impact of a simulated grand tour on sleep, mood, and well-being of competitive cyclists

    No full text
    Aim: Professional cycling is considered one of the most demanding of all endurance sports. The three major professional cycling stages races (i.e. Tour de France, Giro d'Italia and Vuelta a España) require cyclists to compete daily covering between ~150 - 200 km for three consecutive weeks. Anecdotal evidence indicates that such an event has a significant effect on the sleep, mood, and general well--being of cyclists, particularly during the latter stages of the event. The primary aim of this study was to simulate a grand tour and determine the impact a grand tour has on the sleep, mood, and general well--being of competitive cyclists. Methods: Twenty--one male cyclists (M ± SD, age 22.2 ± 2.7 years) were examined for 39 days across three phases (i.e. baseline, simulated grand tour, and recovery). Sleep was assessed using sleep diaries and wrist activity monitors. Mood and general well--being were assessed using the Brunel Mood Scale (BRUMS) and visual analogue scales (VAS). Results: The amount and quality of sleep as assessed by the wrist activity monitors declined during the simulated grand tour. In contrast, self--reported sleep quality improved throughout the study. Cyclists' mood and general well--being as indicated by vigour, motivation, physical and mental state declined during the simulated tour. Conclusion: Future investigations should examine sleep, mood and well--being during an actual grand tour. Such data could prove instrumental toward understanding the sleep and psychological changes that occur during a grand tour

    To nap or not to nap? A systematic review evaluating napping behavior in athletes and the impact on various measures of athletic performance

    Get PDF
    Purpose: The objective of this systematic review was to 1) determine how studies evaluated napping behavior in athletes (frequency, duration, timing and measurement); 2) explore how napping impacted physical performance, cognitive performance, perceptual measures (eg, fatigue, muscle soreness, sleepiness and alertness), psychological state and night-time sleep in athletes. Methods: Five bibliographic databases were searched from database inception to 11 August 2020. Observational and experimental studies comprising able-bodied athletes (mean age ≥ 12 years), published in English, in peer-reviewed journal papers were included. The Downs and Black Quality Assessment Checklist was used for quality appraisal. Results: Thirty-seven studies were identified of moderate quality. Most studies did not include consistent information regarding nap frequency, duration, and timing. Napping may be beneficial for a range of outcomes that benefit athletes (eg, physical and cognitive performance, perceptual measures, psychological state and night-time sleep). In addition, napping presents athletes with the opportunity to supplement their night-time sleep without compromising sleep quality. Conclusion: Athletes may consider napping between 20 to 90 min in duration and between 13:00 and 16:00 hours. Finally, athletes should allow 30 min to reduce sleep inertia prior to training or competition to obtain better performance outcomes. Future studies should include comprehensive recordings of nap duration and quality, and consider using sleep over a 24 hour period (daytime naps and night-time sleep period), specifically using objective methods of sleep assessment (eg, polysomnography/actigraphy)

    How to manage travel fatigue and jet lag in athletes? A systematic review of interventions

    No full text
    OBJECTIVES : We investigated the management of travel fatigue and jet lag in athlete populations by evaluating studies that have applied non-pharmacological interventions (exercise, sleep, light and nutrition), and pharmacological interventions (melatonin, sedatives, stimulants, melatonin analogues, glucocorticoids and antihistamines) following long-haul transmeridian travel-based, or laboratory-based circadian system phase-shifts. DESIGN : Systematic review. ELIGIBILITY CRITERIA : Randomised controlled trials (RCTs), and non-RCTs including experimental studies and observational studies, exploring interventions to manage travel fatigue and jet lag involving actual travel-based or laboratory-based phase-shifts. Studies included participants who were athletes, except for interventions rendering no athlete studies, then the search was expanded to include studies on healthy populations. DATA SOURCES : Electronic searches in PubMed, MEDLINE, CINAHL, Google Scholar and SPORTDiscus from inception to March 2019. We assessed included articles for risk of bias, methodological quality, level of evidence and quality of evidence. RESULTS : Twenty-two articles were included: 8 non-RCTs and 14 RCTs. No relevant travel fatigue papers were found. For jet lag, only 12 athlete-specific studies were available (six non-RCTs, six RCTs). In total (athletes and healthy populations), 11 non-pharmacological studies (participants 600; intervention group 290; four non-RCTs, seven RCTs) and 11 pharmacological studies (participants 1202; intervention group 870; four non-RCTs, seven RCTs) were included. For non-pharmacological interventions, seven studies across interventions related to actual travel and four to simulated travel. For pharmacological interventions, eight studies were based on actual travel and three on simulated travel. CONCLUSIONS : We found no literature pertaining to the management of travel fatigue. Evidence for the successful management of jet lag in athletes was of low quality. More field-based studies specifically on athlete populations are required with a multifaceted approach, better design and implementation to draw valid conclusions. PROSPERO REGISTRATION NUMBER: The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42019126852).http://bjsm.bmj.comhj2020Sports MedicineStatistic

    Managing travel fatigue and jet lag in athletes: A review and consensus statement

    No full text
    Athletes are increasingly required to travel domestically and internationally, often resulting in travel fatigue and jet lag. Despite considerable agreement that travel fatigue and jet lag can be a real and impactful issue for athletes regarding performance and risk of illness and injury, evidence on optimal assessment and management is lacking. Therefore 26 researchers and/or clinicians with knowledge in travel fatigue, jet lag and sleep in the sports setting, formed an expert panel to formalise a review and consensus document. This manuscript includes definitions of terminology commonly used in the field of circadian physiology, outlines basic information on the human circadian system and how it is affected by time-givers, discusses the causes and consequences of travel fatigue and jet lag, and provides consensus on recommendations for managing travel fatigue and jet lag in athletes. The lack of evidence restricts the strength of recommendations that are possible but the consensus group identified the fundamental principles and interventions to consider for both the assessment and management of travel fatigue and jet lag. These are summarised in travel toolboxes including strategies for pre-flight, during flight and post-flight. The consensus group also outlined specific steps to advance theory and practice in these areas
    corecore