6 research outputs found

    Trace metal accumulation in the commercial mussel M. galloprovincialis under future climate change scenarios

    Full text link
    11 pages, 3 figures, 3 tablesThe current trend of climatic alterations will accelerate the modification of the ocean system by, among other aspects, changing the metal speciation and its bioavailability which may have an impact in their accumulation by marine organisms. Understanding the impact of these potential changes is essential for future risk assessment of metal contamination. In the present study, we selected the species Mediterranean mussel (Mytilus galloprovincialis) as the main European aquaculture production bivalve and due to its widespread use for biomonitoring purposes. A long-term test (2 months) was carried out to explore the impact that global change in the marine environment (warming and CO2 increase) may exert on the accumulation of dissolved trace metals (Cu, Co, Pb, Cd, Cr, As and Ni) in different body parts of mussels (foot and rest of soft tissues). Studied mussels were collected at two different climatic locations (Atlantic and Mediterranean Sea) and exposed to unspiked, unpolluted seawater from the Vigo Ria (NW Iberian Peninsula). Results showed that under the global change conditions proposed in this study (1100 pCO2 and 25 °C), the increase in temperature resulted in a lower condition index and byssus strength for mussels from Atlantic Sea, while Mediterranean sea mussels, adapted to higher temperatures, did not show remarkable variations. According to trace metals accumulation in different body parts of the studied mussels, it was observed that the effect of increasing CO2 alone did not show to have an impact in the bioaccumulation, but the combined stressors (increase in CO2 and temperature) may lead to an increase in the bioaccumulation for some elements. The increase in temperature resulted in a decrease of the Cu content of foot tissue (byssus gland) in mussels from Atlantic Sea, which is in accordance with the lower byssus strength observed under such conditions. Our results indicate that the expected seawater temperature increase, which will be produced gradually during next decades, should be further study to ensure the species adaptability and aquaculture productionAuthors wish to acknowledge funding provided by Spanish government through the Ministerio de Economía y Competitividad (project ARIOS Ref. CTM2016-76146-C3-2- R/ CTM2016-76146-C3-1-R) and the post-doctoral position of A. Romero-Freire funded by the Ministry of Science, Innovation and Universities (FJCI-2016-28622).Peer reviewe

    The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat

    Full text link
    16 pages, 4 figures, 2 tables.-- This is an Open Access article distributed under the terms of the Creative Commons Attribution LicenseThe impact of simulated seawater acidification and warming conditions on specimens of the mussel Mytilus galloprovincialis locally adapted to very distinct, widely separated sites in the Mediterranean Sea (Tunisia) and Atlantic Sea (Galicia, NW Spain) was evaluated in relation to key behavioural and eco-physiological parameters. Over the 2-month exposure to the experimental conditions, mussels were fed optimally to ensure that there are no synergistic interactions between climate change drivers and energetic status of the individuals. In general, regardless of origin (Atlantic or Mediterranean), the mussels were rather resilient to acidification for most of the parameters considered and they were able to grow in strongly acidified seawater through an increased feeding activity. However, shell strength decreased (40%) consistently in both mussel populations held in moderately and highly acidified seawater. The observed reduction in shell strength was not explained by slight alterations in organic matter, shell thickness or aragonite:calcite ratio. The combined effects of high acidification and warming on the key response of byssus strength caused a strong decline in mussel performance, although only in Galician mussels, in which the valve opening time decreased sharply as well as condition index (soft tissue state) and shell growth. By contrast, the observed negative effect of highly acidified scenario on the strength of Tunisian mussel shells was (partly but not totally) counterbalanced by the higher seawater temperature. Eco-physiological and behavioural interactions in mussels in relation to climate change are complex, and future scenarios for the ecology of the species and also the feasibility of cultivating them in Atlantic and Mediterranean zones are discussedThis work was supported by the Spanish government through the Ministerio de EconomĂ­a y Competitividad and European FEDER funds (AGL-2013-45945-R, CTM2016-76146-C3-2-R/CTM2016-76146-C3-1-R) and the Spanish National Research Council (CSIC) through the program I-COOP+ 2016 (ICOOPA20147 to J.L.)Peer reviewe

    Behavioural and eco-physiological responses of the mussel Mytilus galloprovincialis to acidification and distinct feeding regimes

    Full text link
    The carbon dioxide taken up by the ocean is increasing as levels of atmospheric carbon dioxide increase, thus lowering the ocean pH and altering the carbonate system. In this laboratory study, we evaluated the physiological responses of juvenile mussels Mytilus galloprovincialis from Galician waters (NW Iberian Peninsula) exposed to control (500 µatm) and elevated (800 or 1200 µatm) seawater pCO2 conditions under 2 different feeding regimes (optimal and suboptimal). Shell properties such as compressive strength and composition (organic matter and aragonite:calcite ratio) were negatively affected by high seawater pCO2, regardless of food availability. This result suggests that water chemistry is a main driver for shell development. Under the optimal feeding regime, mussel feeding rates increased in response to elevated pCO2, presumably as a strategy to maintain a high strength of attachment. In contrast, mussels on the suboptimal diet showed weak attachment and narrow valve opening at the highest pCO2 condition. Thus, our results suggest that with optimal food availability, mussels were resilient to water acidification with respect to feeding activity, valve opening and attachment strength. Under a suboptimal diet, however, the ability of mussels to respond to acidification was compromised. These results highlight complex ecophysiological interactions for calcifying organisms subjected to climate changeThis study was funded by the Spanish government through the Ministerio de Economía y Competitividad that included European FEDER funds (projects Ref. AGL-2013-45945-R, CTM2016-76146-C3-2-R/ CTM2016- 76146-C3-1-R). J.L. acknowledges funding from the Spanish National Research Council (CSIC) through the Program ICOOP+ 2016 (Ref. ICOOPA20147)Peer reviewe

    Seawater carbonate chemistry and shell properties, behaviour of the mussel Mytilus galloprovincialis

    Full text link
    The carbon dioxide taken up by the ocean is increasing as levels of atmospheric carbon dioxide increase, thus lowering the ocean pH and altering the carbonate system. In this laboratory study, we evaluated the physiological responses of juvenile mussels Mytilus galloprovincialis from Galician waters (NW Iberian Peninsula) exposed to control (500 µatm) and elevated (800 or 1200 µatm) seawater pCO2 conditions under 2 different feeding regimes (optimal and suboptimal). Shell properties such as compressive strength and composition (organic matter and aragonite:calcite ratio) were negatively affected by high seawater pCO2, regardless of food availability. This result suggests that water chemistry is a main driver for shell development. Under the optimal feeding regime, mussel feeding rates increased in response to elevated pCO2, presumably as a strategy to maintain a high strength of attachment. In contrast, mussels on the suboptimal diet showed weak attachment and narrow valve opening at the highest pCO2 condition. Thus, our results suggest that with optimal food availability, mussels were resilient to water acidification with respect to feeding activity, valve opening and attachment strength. Under a suboptimal diet, however, the ability of mussels to respond to acidification was compromised. These results highlight complex ecophysiological interactions for calcifying organisms subjected to climate change

    Seawater carbonate chemistry and clearance rate, valve opening behaviour, byssus strength and shell characteristics of mussel Mytilus galloprovincialis

    Full text link
    The impact of simulated seawater acidification and warming conditions on specimens of the mussel Mytilus galloprovincialis locally adapted to very distinct, widely separated sites in the Mediterranean Sea (Tunisia) and Atlantic Sea (Galicia, NW Spain) was evaluated in relation to key behavioral and eco-physiological parameters. Over the 2-month exposure to the experimental conditions, mussels were fed optimally to ensure that there are no synergistic interactions between climate change drivers and energetic status of the individuals. In general, regardless of origin (Atlantic or Mediterranean), the mussels were rather resilient to acidification for most of the parameters considered and they were able to grow in strongly acidified seawater through an increased feeding activity. However, shell strength decreased (40%) consistently in both mussel populations held in moderately and highly acidified seawater. The observed reduction in shell strength was not explained by slight alterations in organic matter, shell thickness or aragonite: calcite ratio. The combined effects of high acidification and warming on the key response of byssus strength caused a strong decline in mussel performance, although only in Galician mussels, in which the valve opening time decreased sharply as well as condition index (soft tissue state) and shell growth. By contrast, the observed negative effect of highly acidified scenario on the strength of Tunisian mussel shells was (partly but not totally) counterbalanced by the higher seawater temperature. Eco-physiological and behavioral interactions in mussels in relation to climate change are complex, and future scenarios for the ecology of the species and also the feasibility of cultivating them in Atlantic and Mediterranean zones are discussed

    Seawater carbonate chemistry and trace metal accumulation in the commercial mussel M. galloprovincialis

    Full text link
    The current trend of climatic alterations will accelerate the modification of the ocean system by, among other aspects, changing the metal speciation and its bioavailability which may have an impact in their accumulation by marine organisms. Understanding the impact of these potential changes is essential for future risk assessment of metal contamination. In the present study, we selected the species Mediterranean mussel (Mytilus galloprovincialis) as the main European aquaculture production bivalve and due to its widespread use for biomonitoring purposes. A long-term test (2 months) was carried out to explore the impact that global change in the marine environment (warming and CO2 increase) may exert on the accumulation of dissolved trace metals (Cu, Co, Pb, Cd, Cr, As and Ni) in different body parts of mussels (foot and soft tissue). Studied mussels were collected at two different climatic locations (Atlantic and Mediterranean Sea) and exposed to unspiked, unpolluted seawater from the Vigo Ria (NW Iberian Peninsula). Results showed that under the global change conditions proposed in this study (1100 pCO2 and 25 °C), the increase in temperature resulted in a lower condition index and byssus strength for mussels from Atlantic Sea, while Mediterranean sea mussels, adapted to higher temperatures, did not show remarkable variations. According to trace metals accumulation in different body parts of the studied mussels, it was observed that the effect of increasing CO2 alone did not show to have an impact in the bioaccumulation, but the combined stressors (increase in CO2 and temperature) may lead to an increase in the bioaccumulation for some elements. The increase in temperature resulted in a decrease of the Cu content of foot tissue (byssus gland) in mussels from Atlantic Sea, which is in accordance with the lower byssus strength observed under such conditions. Our results indicate that the expected seawater temperature increase, which will be produced gradually during next decades, should be further study to ensure the species adaptability and aquaculture production
    corecore