1 research outputs found

    Ultra-large polymer-free suspended graphene films

    Full text link
    Due to its extraordinary properties, suspended graphene is a critical element in a wide range of applications. Preparation methods that preserve the unique properties of graphene are therefore in high demand. To date, all protocols for the production of large graphene films have relied on the application of a polymer film to stabilize graphene during the transfer process. However, this inevitably introduces contaminations that have proven to be extremely difficult, if not impossible, to remove entirely. Here we report the polymer-free fabrication of suspended films consisting of three graphene layers spanning circular holes of 150 μ\mum diameter. We find a high fabrication yield, very uniform properties of the freestanding graphene across all holes as well across individual holes. A detailed analysis by confocal Raman and THz spectroscopy reveals that the triple-layer samples exhibit structural and electronic properties similar to those of monolayer graphene. We demonstrate their usability as ion-electron converters in time-of-flight mass spectrometry and related applications. They are two orders of magnitude thinner than previous carbon foils typically used in these types of experiments, while still being robust and exhibiting a sufficiently high electron yield. These results are an important step towards replacing free-standing ultra-thin carbon films or graphene from polymer-based transfers with much better defined and clean graphene.Comment: 9 pagers, 5 figure
    corecore