6 research outputs found

    Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector.

    No full text
    When PGSE NMR is applied to water in microheterogeneous materials such as liquid crystals, foodstuffs, porous rocks, and biological tissues, the signal attenuation is often multi-exponential, indicating the presence of pores having a range of sizes or anisotropic domains having a spread of orientations. Here we modify the standard PGSE experiment by introducing low-amplitude harmonically modulated gradients, which effectively make the q-vector perform magic-angle spinning (MAS) about an axis fixed in the laboratory frame. With this new technique, denoted q-MAS PGSE, the signal attenuation depends on the isotropic average of the local diffusion tensor. The capability of q-MAS PGSE to distinguish between pore size and domain orientation dispersion is demonstrated by experiments on a yeast cell suspension and a polydomain anisotropic liquid crystal. In the latter case, the broad distribution of apparent diffusivities observed with PGSE is narrowed to its isotropic average with q-MAS PGSE in a manner that is analogous to the narrowing of chemical shift anisotropy powder patterns using magic-angle sample spinning in solid-state NMR. The new q-MAS PGSE technique could be useful for resolving size/orientation ambiguities in the interpretation of PGSE data from, e.g., water confined within the axons of human brain tissue

    Spectral characterization of diffusion with chemical shift resolution: Highly concentrated water-in-oil emulsion.

    No full text
    We present a modulated gradient spin-echo method, which uses a train of sinusoidally shaped gradient pulses separated by 180 degrees radio-frequency (RF) pulses. The RF pulses efficiently refocus chemical shifts and de-phasing due to susceptibility differences, resulting in undistorted, high-resolution diffusion weighted spectra. This allows for the simultaneous spectral characterization of the diffusion of several molecular species with different chemical shifts. The technique is robust against susceptibility artifacts, field inhomogeneity and imperfections in the gradient generating equipment. The feasibility of the technique is demonstrated by measuring the diffusion of water, oil, and water-soluble salt in a highly concentrated water-in-oil emulsion. The diffusion of water and salt reveal precise information about the droplet size distribution below the mum-range. Common droplet size distribution explains both the data for water with finite long-range diffusion and the data for salt with negligible long-range diffusion. The results of water diffusion show that the technique is efficient in deconvolving the effects of molecular exchange between droplets and restricted diffusion within droplets. The effects of water exchange suggest that droplets of different sizes are uniformly distributed within the sample

    Apparent exchange rate mapping with diffusion MRI.

    No full text
    Water exchange through the cell membranes is an important feature of cells and tissues. The rate of exchange is determined by factors such as membrane lipid composition and organization, as well as the type and activity of aquaporins. A method for noninvasively estimating the rate of water exchange would be useful for characterizing pathological conditions, e.g., tumors, multiple sclerosis, and ischemic stroke, expected to be associated with a change of the membrane barrier properties. This study describes the filter exchange imaging method for determining the rate of water exchange between sites having different apparent diffusion coefficients. The method is based on the filter-exchange pulsed gradient spin-echo NMR spectroscopy experiment, which is here modified to be compatible with the constraints of clinical MR scanners. The data is analyzed using a model-free approach yielding maps of the apparent exchange rate, here being introduced in analogy with the concept of the apparent diffusion coefficient. Proof-of-principle experiments are performed on microimaging and whole-body clinical scanners using yeast suspension phantoms. The limitations and appropriate experimental conditions are examined. The results demonstrate that filter exchange imaging is a fast and reliable method for characterizing exchange, and that it has the potential to become a powerful diagnostic tool. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc
    corecore