4 research outputs found

    Erbium upconversion luminescence from sol-gel derived multilayer porous inorganic perovskite film

    Get PDF
    Erbium-doped barium titanate (BaTiO3:Er) xerogel film with a thickness of about 500 nm was formed on the porous strontium titanate (SrTiO3) xerogel film on Si substrate after annealing at 800 Β°C or 900 Β°C. The elaborated structures show room temperature upconversion luminescence under 980 nm excitation with the photoluminescence (PL) bands at 523, 546, 658, 800 and 830 nm corresponding to 2H11/2β†’4I15/2, 4S3/2β†’4I15/2, 4F9/2β†’4I15/2 and 4I9/2β†’4I15/2 transitions of trivalent erbium. Raman and X-ray diffraction (XRD) analysis of BaTiO3:Er\porous SrTiO3\Si structure showed the presence of perovskite phases. Its excellent up-conversion optical performance will greatly broaden its applications in perovskite solar cells and high-end anti-counterfeiting technologies

    Optical Properties and Upconversion Luminescence of BaTiO3 Xerogel Structures Doped with Erbium and Ytterbium

    Get PDF
    Erbium upconversion (UC) photoluminescence (PL) from sol-gel derived barium titanate (BaTiO3:Er) xerogel structures fabricated on silicon, glass or fused silica substrates has been studied. The fabricated structures under continuous-wave excitation at 980 nm and nanosecond laser excitation at 980 and 1540 nm demonstrate room temperature PL with the bands at 410, 523, 546, 658, 800 and 830 nm, which correspond to the 2H9/2 β†’ 4I15/2, 2H11/2 β†’ 4I15/2, 4S3/2 β†’ 4I15/2, 4F9/2β†’ 4I15/2 and 4I9/2β†’ 4I15/2 transitions in Er3+ ions. The intensity of erbium UΠ‘ PL increases when an additional macroporous layer of strontium titanate is used beneath the BaTiO3 xerogel layer. It is enhanced for BaTiO3 xerogel films codoped with erbium and ytterbium (BaTiO3:Er,Yb). The redistribution of the intensity of the PL bands is observed for the latter and it depends on the excitation conditions. Finally, a Bragg reflector and a microcavity structure comprising of alternating (BaTiO3:Er,Yb) and SiO2 xerogel layers were fabricated with the cavity mode near the red PL band of Er3+ ions. Enhancement of UC PL from the microcavity was observed for the sample annealed from 450Β°C to 600Β°C. The fabricated cavity structures annealed at 450Β°C allow us to tune the cavity mode with 10 nm shift within the temperature range from +20Β°C to +130Β°C. Photonic application of BaTiO3 xerogel structures doped with lanthanides is discussed

    Ап-конвСрсионная Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ Π² ксСрогСлС Ρ‚ΠΈΡ‚Π°Π½Π°Ρ‚Π° бария, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ эрбиСм ΠΈ ΠΈΡ‚Ρ‚Π΅Ρ€Π±ΠΈΠ΅ΠΌ, Π² пористом Π°Π½ΠΎΠ΄Π½ΠΎΠΌ оксидС алюминия

    Get PDF
    In this work, sol-gel synthesis and luminescence properties of erbium and ytterbium doped BaTiO3 (BaTiO3:Er,Yb) in porous anodic alumina are reported. Porous anodic alumina with its well-known tailor-made honeycomb structure was chosen as a template for the sol-gel synthesis of BaTiO3:Er,Yb. Porous anodic alumina was fabricated either on silicon wafer or aluminum foil. The sol corresponding to xerogel content of Ba0,76Er0,04Yb0,20TiO3 was deposited on porous anodic alumina by spinning, which was followed by drying and heat treatment at a relatively low temperature 450 Β°C on aluminum foil or 800 Β°C on silicon. Porous anodic alumina known also as an optically anisotropic structure differed in the experiments by diameter of the pores and thickness. Evidently, all fabricated samples demonstrated a roomtemperature erbium upconversion luminescence under excitation in the continuous-wave (CW) mode with a focused 980 nm laser beam of a 200 mW diode module. Erbium upconversion luminescence is characterized by the bands at 410, 523, 546, and 658 nm, corresponding to the 2H9/2 β†’ 4I15/2, 2H11/2 β†’ 4I15/2, 4S3/2 β†’ 4I15/2 and 4F9/2 β†’ 4I15/2.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрСн золь-гСль-синтСз ΠΈ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Π΅ свойства Ρ‚ΠΈΡ‚Π°Π½Π°Ρ‚Π° бария, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ эрбиСм ΠΈ ΠΈΡ‚Ρ‚Π΅Ρ€Π±ΠΈΠ΅ΠΌ (BaTiO3:Er,Yb), Π² пористом Π°Π½ΠΎΠ΄Π½ΠΎΠΌ оксидС алюминия. ΠŸΠΎΡ€ΠΈΡΡ‚Ρ‹ΠΉ Π°Π½ΠΎΠ΄Π½Ρ‹ΠΉ оксид алюминия с Π΅Π³ΠΎ Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстной ячСистой структурой Π±Ρ‹Π» Π²Ρ‹Π±Ρ€Π°Π½ Π² качСствС ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ для золь-гСль-синтСза BaTiO3:Er,Yb. ΠŸΠΎΡ€ΠΈΡΡ‚Ρ‹ΠΉ Π°Π½ΠΎΠ΄Π½Ρ‹ΠΉ оксид алюминия ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Π»ΠΈ Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ пластинС ΠΈ алюминиСвой Ρ„ΠΎΠ»ΡŒΠ³Π΅. Раствор, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ составу ксСрогСля Ba0,76Er0,04Yb0,20TiO3, осаТдался Π½Π° пористый Π°Π½ΠΎΠ΄Π½Ρ‹ΠΉ оксид алюминия ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ цСнтрифугирования с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ ΡΡƒΡˆΠΊΠΎΠΉ ΠΈ Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΏΡ€ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 450 Β°C Π½Π° алюминиСвой Ρ„ΠΎΠ»ΡŒΠ³Π΅ ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ 800 Β°C Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΈ. ΠŸΠΎΡ€ΠΈΡΡ‚Ρ‹ΠΉ Π°Π½ΠΎΠ΄Π½Ρ‹ΠΉ оксид алюминия, извСстный Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ оптичСски анизотропная структура, Π² экспСримСнтС отличался Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ ΠΏΠΎΡ€ ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ испытаний установлСно, Ρ‡Ρ‚ΠΎ всС ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Π°ΠΏ-ΠΊΠΎΠ½Π²Π΅Ρ€ΡΠΈΠΎΠ½Π½ΡƒΡŽ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡŽ эрбия ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΏΡ€ΠΈ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ Π΄ΠΈΠΎΠ΄Π½Ρ‹ΠΌ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ Π² Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ сфокусированным ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ Π΄ΠΈΠΎΠ΄Π° Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ‹ 980 Π½ΠΌ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ 200 ΠΌΠ’Ρ‚. Ап-конвСрсионная Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ эрбия характСризуСтся полосами с максимумом Π½Π° Π΄Π»ΠΈΠ½Π°Ρ… Π²ΠΎΠ»Π½ 410, 523, 546 ΠΈ 658 Π½ΠΌ ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΈΠΌ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°ΠΌΠΈ 2H9/2 β†’ 4I15/2, 2H11/2 β†’ 4I15/2, 4S3/2 β†’ 4I15/2 ΠΈ 4F9/2 β†’ 4I15/2

    Upconversion Luminescence of Er3+ Ions from Barium Titanate Xerogel Powder and Target Fabricated by Explosive Compaction Method

    Get PDF
    Photo- and cathodoluminescence in the visible range from erbium-doped barium titanate xerogels obtained in the form of a powder and a target pressed from it by explosive compaction are investigated. The powder and target exhibit upconversion luminescence of erbium ions excited at wavelengths in the regions 950–1000 and 1450–1550 nm that is characterized by strong bands at 650 and 520–560 nm and a weak band at ~820 nm that correspond to the 4F9/2 β†’ 4I15/2, 2H11/2 β†’ 4I15/2, 4S3/2 β†’ 4I15/2, and 4I9/2 β†’ 4I15/2 transitions of Er3+. The target also demonstrates cathodoluminescence at room temperature and liquid nitrogen temperature with the strongest bands at 650, 520, and 538 nm
    corecore